Grippers LEH Series

Size: 10, 16, 20, 25, 32, 40

Battery-less Absolute (Step Motor 24 VDC)*1

Incremental (Step Motor 24 VDC)

*1 F type only

Z Type (2 fingers)

▶p. **811**

Compact and light, various gripping forces

LEHZ Series

	Size	Stroke/ Gripping		Stroke/ both sides	force [N]
		[mm]	Basic	Compact	
Ī	10	4	C to 14	2 to 6	
Ī	16	6	6 to 14	3 to 8	
	20	10	10 1- 10	11 1- 00	
	25	14	16 to 40	11 to 28	
	32	22	52 to 130	_	
	40	30	84 to 210	_	

ZJ Type (2 fingers)

▶p. **827**

With dust cover (Equivalent to IP50) 3 types of cover material (Finger portion only)

LEHZJ Series

EETIEU OCTIOS				
Size	Stroke/ both sides	Gripping	ng force [N]	
Size	[mm]	Basic	Compact	
10	4	6 to 14	3 to 6	
16	6		4 to 8	
20	10	16 to 40	11 1- 00	
25	14		11 to 28	

F Type (2 fingers) ▶p. 841, 845

S Type (3 fingers)

▶p. **864**

Can hold various types of workpieces with a long stroke

LEHF Series

EEIII Jenes			
Stroke/ both sides [mm]	Gripping force [N]		
16 (32)	3 to 7		
24 (48)	11 to 28		
32 (64)	48 to 120		
40 (80)	72 to 180		
	Stroke/ both sides [mm] 16 (32) 24 (48) 32 (64)		

(): Long stroke

Can hold round workpieces

LEHS Series

Size	diameter	Gripping	force [N]
Size	[mm]	Basic	Compact
10	4	2.2 to 5.5	1.4 to 3.5
20	6	9 to 22	7 to 17
32	8	36 to 90	_
40	12	52 to 130	_

Battery-less Absolute (Step Motor 24 VDC) Incremental (Step Motor 24 VDC) Controllers/Drivers

▶p. **994**

Step data input type JXC51/61 Series

- 64 positioning points
- Input using controller setting kit or teaching hox

▶EtherCAT/EtherNet/IP™/ PROFINET/DeviceNet®/ IO-Link/CC-Link direct input type JXCE□/91/P1/D1/L□/M1 Series

▶Programless type LECP1 Series

- 14 positioning points
- Control panel setting

▶Pulse input type LECPA Series

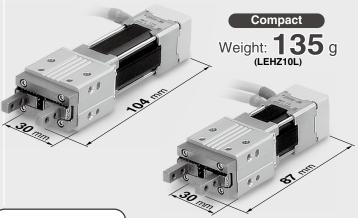
With drop prevention function (Self-lock mechanism is provided for all series.)

Gripping force of the workpieces is maintained when stopped or restarted.

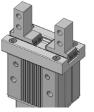
The workpieces can be removed with manual override.

Compact body sizes and long stroke variations

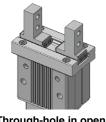
Gripping force equivalent to the widely used air grippers is available.

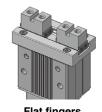

Gripper 2-Finger Type

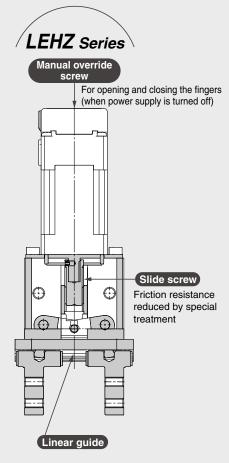
LEHZ Series/Size: 10, 16, 20, 25, 32, 40


LEHZJ Series/Size: 10, 16, 20, 25 LEHF Series/Size: 10, 20, 32, 40

Compact and lightweight Various gripping forces

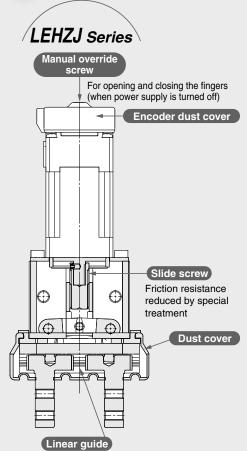

Weight: **165** g (LEHZ10)


Finger options


Side tapped mounting

Through-hole in open/ close direction

Flat fingers


● Sealed-construction dust cover (Equivalent to IP50)

- Prevents machining chips, dust, etc., from getting inside
- Prevents spattering of grease, etc.

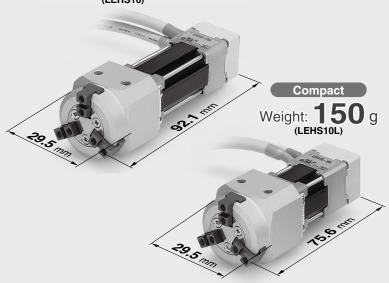
● 3 types of cover material (Finger portion only)

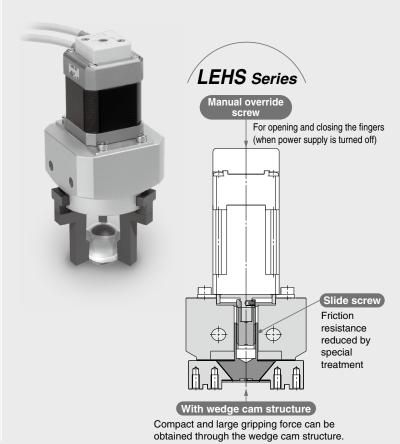
- Chloroprene rubber (black): Standard
- Fluororubber (black): Option
- Silicone rubber (white): Option

- ●Can set position, speed and force (64 points)
- Energy-saving product

Power consumption reduced by self-lock mechanism

With gripping check function

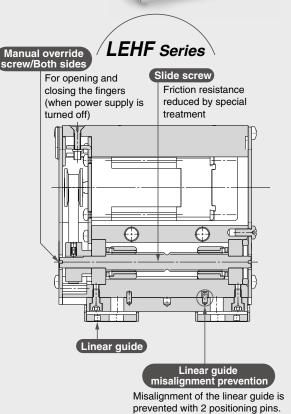

Identify workpieces with different dimensions/ detect mounting and removal of the workpieces.


Gripper 3-Finger Type

LEHS Series/Size: 10, 20, 32, 40

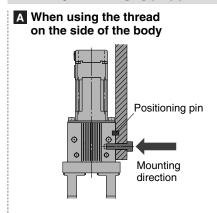
Can hold round workpieces

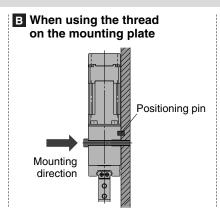
- Can hold various types of workpieces with a long stroke
 With internal battery-less absolute encoder (Size: 32, 40) Restart from the last stop
 - Restart from the last stop position is possible after recovery of the power supply.

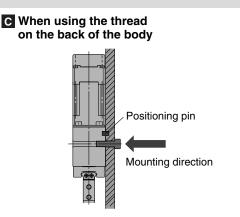

 Reduced maintenance (No need for control or replacement)

Stroke:

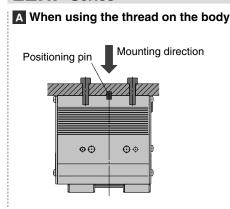
Max. 40 mm

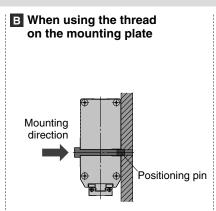

Stroke:

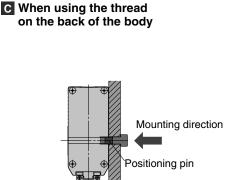

Max. 80 mm

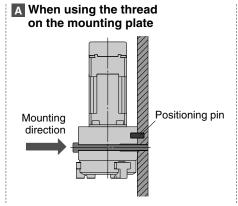


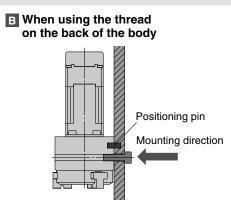
<Mounting Variations>

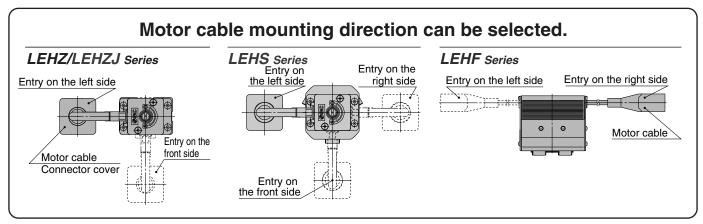

LEHZ/LEHZJ Series



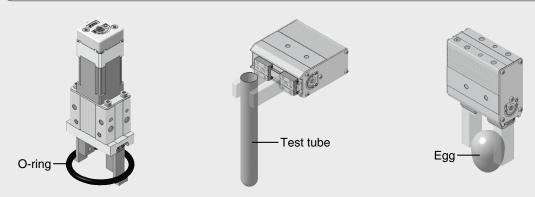


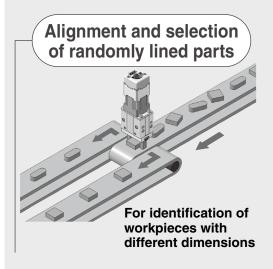

LEHF Series

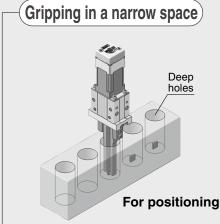


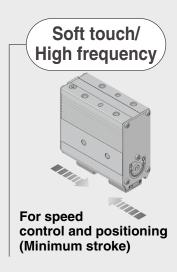


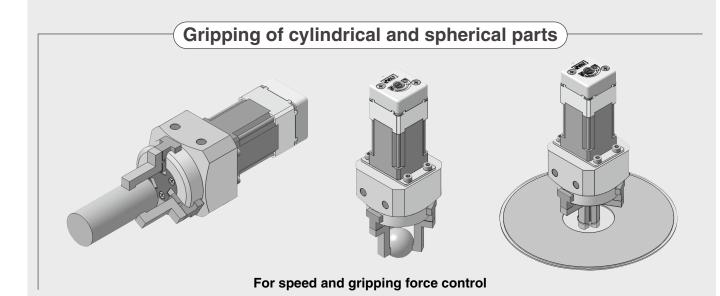
LEHS Series






Application Examples


Gripping of components that are easily deformed or damaged



For speed and gripping force control and positioning

Incremental (Step Motor 24 VDC)

Gripper 2-Finger Type LEHZ Series

Model Selection	p. 811
How to Order	p. 817
Specifications	p. 820
Construction	p. 821
Dimensions	p. 822
Finger Options	p. 825

Incremental (Step Motor 24 VDC)

Gripper 2-Finger Type/With Dust Cover LEHZJ Series

Model Selection	
How to Order	p. 833
Specifications	p. 836
Construction	p. 837
Dimensions	p. 838

Battery-less Absolute (Step Motor 24 VDC)

Gripper LEHF Series

Model Selection	
How to Order	p. 849
Specifications	p. 851
Construction	p. 852
Dimensions	p. 853

Incremental (Step Motor 24 VDC)

Gripper 2-Finger Type LEHF Series

Model Selection	p. 845
How to Order	p. 855
Specifications	p. 858
Construction	p. 859
Dimensions	p. 860

Incremental (Step Motor 24 VDC)

Gripper 3-Finger Type LEHS Series

Model Selection	p. 864
How to Order	
Specifications	p. 870
Construction	
Dimensions	p. 872

Specific Product Precautions p. 874

Incremental (Step Motor 24 VDC) Controllers

Step Data Input Type/JXC51/61 Series	p. 1017
EtherCAT/EtherNet/IP™/PROFINET/DeviceNet®/IO-Link/CC-	-Link
Direct Input Type/JXCE□/91/P1/D1/L□/M1 Series	
Gateway Unit/LEC-G Series	p. 1038
Programless Controller/LECP1 Series	p. 1042
Step Motor Driver/LECPA Series	p. 1057
Actuator Cable	p. 1091
Communication Cable for Controller Setting/ <i>LEC-W2A-</i> □	p. 1094
Teaching Box/ <i>LEC-T1</i>	p. 1095

3-Axis Step Motor Controller

EtherNet/IP™ Type/*JXC92 Series* p. 1079

4-Axis Step Motor (Servo/24 VDC) Controller

Parallel I/O Type/JXC73/83 Series	p. 1081
EtherNet/IP™ Type/ <i>JXC93 Series</i>	p. 1081

Grippers

2-Finger Type LEHZ Series

2-Finger Type/With Dust Cover LEHZJ Series

2-Finger Type LEHF Series

3-Finger Type LEHS Series

Controllers/Drivers p. 994

Model Selection

Selection Procedure

Step 1 Check the gripping force. Check the gripping point and overhang. Step 3 Check the external force on fingers.

Step 1 Check the gripping force.

Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper with respect to workpiece mass

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times*1 the workpiece weight, or more.
- *1 For details, refer to the calculation of required gripping force.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.

Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.

Required gripping force

= 0.1 kg x 20 x 9.8 m/s² \approx 19.6 N or more

Pushing force: 70%

Pushing force is one of the values of step data that is input into the controller.

Gripping point distance: 30 mm

LEHZ20 Pushing force 100% 2. 40 Pushing force 100% 2. 40 0. 20 0.

When the LEHZ20 is selected.

- Gripping force can be found to be 27 N from the intersection point of gripping point distance L = 30 mm and pushing force of 70%.
- Gripping force is 27.6 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

Pushing speed: 30 mm/s

Calculation of required gripping force

Attachment F Workpiece

When gripping a workpiece as in the figure to the left, and with the following definitions,

- F: Gripping force [N]
- μ: Coefficient of friction between the attachments and the workpiece
- m: Workpiece mass [kg]
- g: Gravitational acceleration (= 9.8 m/s²)
- mg: Workpiece weight [N]

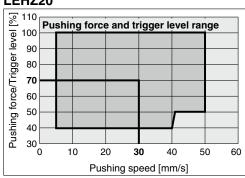
the conditions under which the workpiece will not drop are

 $\frac{2}{T}$ x μ F > mg

Number of fingers

and therefore, F > $\frac{\text{mg}}{\text{2 x }\mu}$

With "a" representing the margin,
"F" is determined by the following formula:


 $F = \frac{mg}{2 \times \mu} \times a$

"Gripping force at least 10 to 20 times the workpiece weight"

 The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" = 4, which allows for impacts that occur during normal transportation, etc.

When μ = 0.2	When μ = 0.1	
$F = \frac{mg}{2 \times 0.2} \times 4 = 10 \times mg$	$F = \frac{mg}{2 \times 0.1} \times 4 = 20 \times mg$	
10 x Workpiece weight	20 x Workpiece weight	

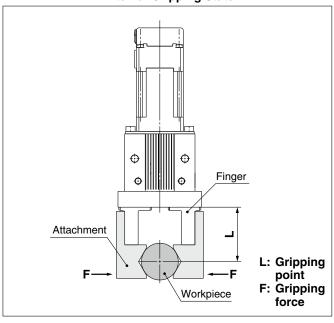
LEHZ20

- Pushing speed is satisfied at the point where 70% of the pushing force and 30 mm/s of the pushing speed cross.
- * Confirm the pushing speed range from the determined pushing force [%].

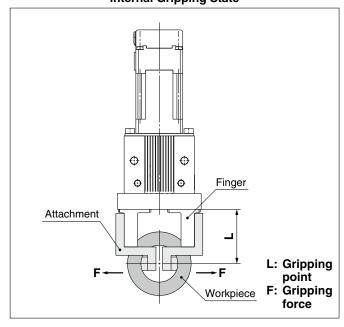
<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)

Coefficient of friction $\boldsymbol{\mu}$	Attachment – Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

- $*\,\bullet$ Even in cases where the coefficient of friction is greater than $\mu=$ 0.2, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.
- If high acceleration or impact forces are encountered during motion, a further margin should be considered.


Step 1 Check the gripping force: LEHZ Series

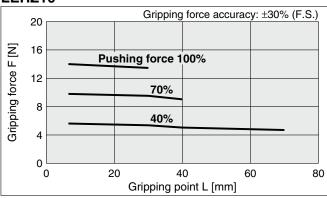
• Indication of gripping force

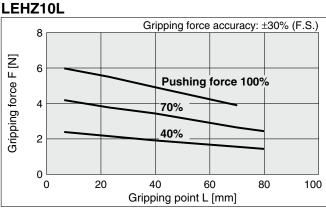

The gripping force shown in the graphs below is expressed as "F", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

• Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

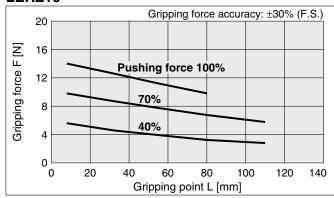
External Gripping State

Internal Gripping State

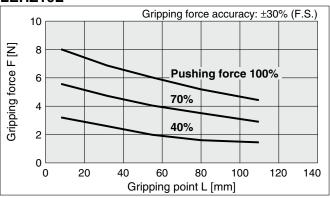

Basic


* Pushing force is one of the values of step data that is input into the controller.

Compact


* Pushing force is one of the values of step data that is input into the controller.

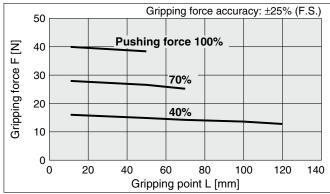
LEHZ10



LEHZ16

LEHZ16L

Step 1 Check the gripping force: LEHZ Series

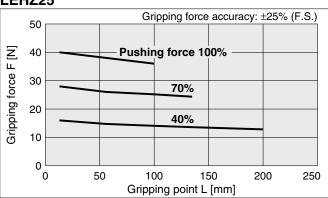

Basic

* Pushing force is one of the values of step data that is input into the controller.

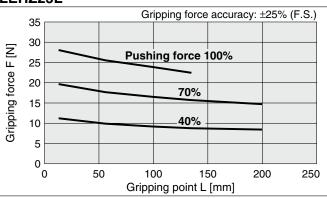
Compact

* Pushing force is one of the values of step data that is input into the controller.

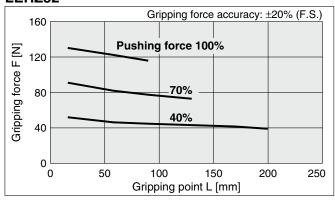
LEHZ20


LEHZ20L

35

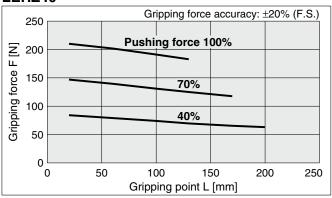

Gripping force accuracy: ±25% (F.S.) **Pushing force 100%**

30 Gripping force F [N] 25 20 70% 15 40% 10 5 60 0 20 40 80 100 140 Gripping point L [mm]

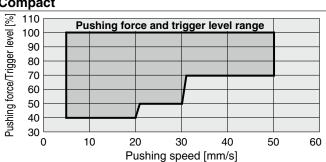

LEHZ25

LEHZ25L

LEHZ32

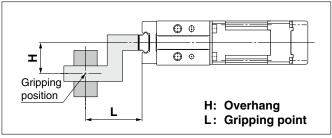

Selection of Pushing Speed

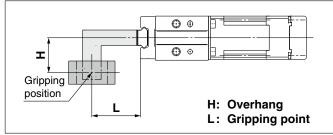
• Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.


Basic

LEHZ40

Compact

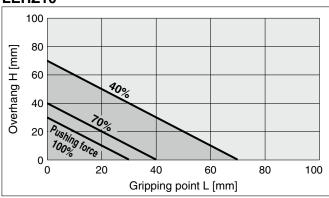



Step 2 Check the gripping point and overhang: LEHZ Series

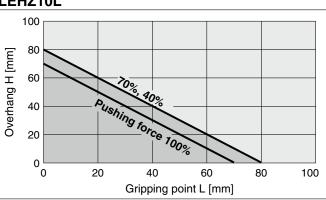
- Decide the gripping position of the workpiece so that the amount of overhang "H" stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

External Gripping State

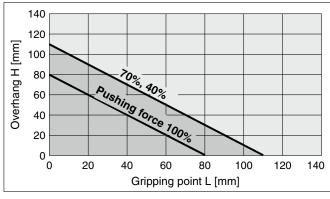
Internal Gripping State

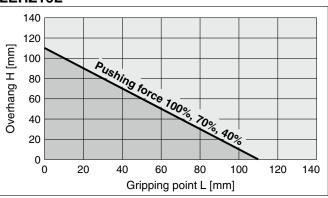

Basic

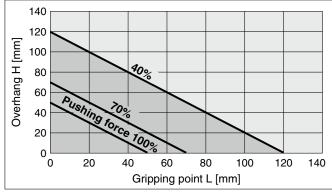
* Pushing force is one of the values of step data that is input into the controller.

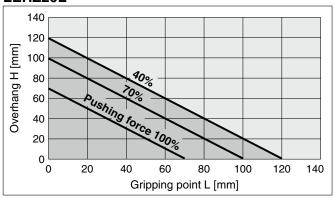

Compact

* Pushing force is one of the values of step data that is input into the controller.


LEHZ10


LEHZ10L

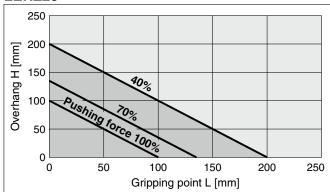

LEHZ16


LEHZ16L

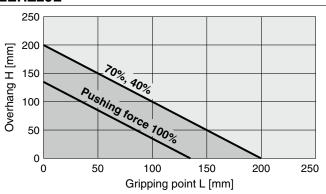
LEHZ20

LEHZ20L

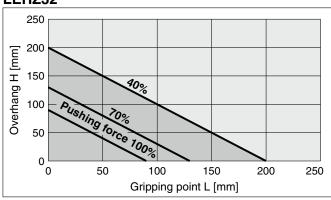
Step 2 Check the gripping point and overhang: LEHZ Series

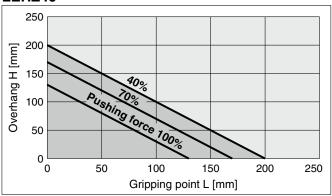

Basic

* Pushing force is one of the values of step data that is input into the controller.

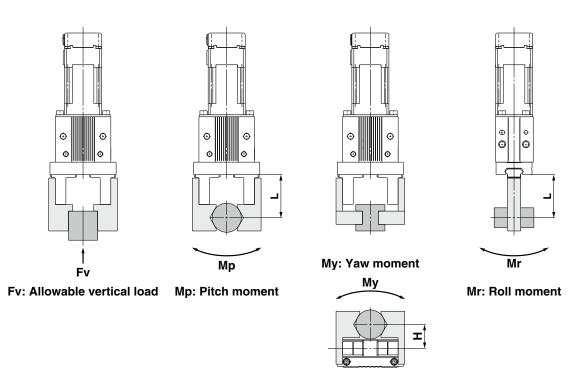

Compact

* Pushing force is one of the values of step data that is input into the controller.


LEHZ25


LEHZ25L

LEHZ32



LEHZ40

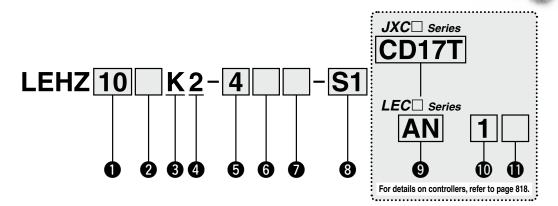
Step 3 Check the external force on fingers: LEHZ Series -

H, L: Distance to the point at which the load is applied [mm]

			n, L. Distance to the po	int at which the load is applied [min]	
Model	Allowable vertical load	Static allowable moment			
iviodei	Fv [N]	Pitch moment: Mp [N·m]	Yaw moment: My [N·m]	Roll moment: Mr [N·m]	
LEHZ10(L)K2-4	58	0.26	0.26	0.53	
LEHZ16(L)K2-6	98	0.68	0.68	1.36	
LEHZ20(L)K2-10	147	1.32	1.32	2.65	
LEHZ25(L)K2-14	255	1.94	1.94	3.88	
LEHZ32(L)K2-22	343	3	3	6	
LEHZ40(L)K2-30	490	4.5	4.5	9	

^{*} Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
Allowable load F [N] = $\frac{\text{M (Static allowable moment) [N·m]}}{\text{L x } 10^{-3}}^{*1}$ (*1 Constant for unit conversion)	When a static load of f = 10 N is operating, which applies pitch moment to point L = 30 mm from the LEHZ16K2-6 guide. Therefore, it can be used. $Allowable load F = \frac{0.68}{30 \times 10^{-3}} = 22.7 [N]$ $Load f = 10 [N] < 22.7 [N]$


Gripper 2-Finger Type

LEHZ Series LEHZ10, 16, 20, 25, 32, 40

(RoHS)

How to Order

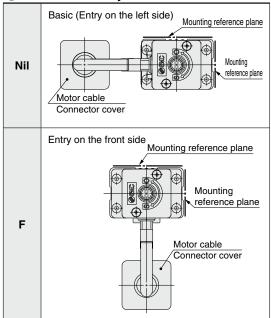
40

2 Motor size

Nil	Basic
L*1	Compact

		_
ย	Stroke	[mm]

Stroke/both sides	Size
4	10
6	16
10	20
14	25
22	32
30	40

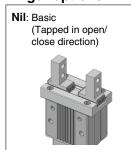

A Lead

Leau	
K	Basic

6 Finger options

Nil	Basic (Tapped in open/close direction)	
Α	Side tapped mounting	
В	Through-hole in open/close direction	
С	Flat fingers	

Motor cable entry



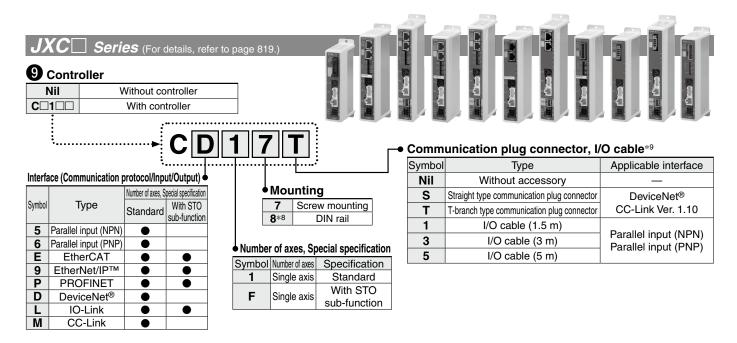
8 Actuator cable type/length*3

Standard cable [m]		Robotic cable			[m]
Nil	None	R1	1.5	RA	10*2
S1	1.5	R3	3	RB	15* ²
S3	3	R5	5	RC	20*2
S5	5	R8	8*2		

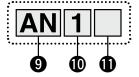
Finger options

4 2-finger type

A: Side tapped mounting



B: Through-hole in open/ close direction



C: Flat fingers

Series (For details, refer to page 819.)

9 Controller/Driver type*4

Nil	Without controller/driver	
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA*5	NPN
AP	(Pulse input type)	PNP

I/O cable length*6

Nil	Without cable (Without communication plug connector)
1	1.5 m
3	3 m* ⁷
5	5 m* ⁷

Controller/Driver mounting

Nil	Screw mounting
D	DIN rail*8

- *1 Size: 10, 16, 20, 25 only
- *2 Produced upon receipt of order (Robotic cable only)
- *3 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to the Web Catalog if only the actuator cable is required.
- *4 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.
- *5 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R-□) on page 1062 separately.
- *6 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. If an I/O cable is required, refer to the cable for the LECP1 (Web Catalog) or LECPA (Web Catalog).
- *7 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
- *8 The DIN rail is not included. It must be ordered separately.
- Select "Nil" for anything other than DeviceNet®, CC-Link, or parallel

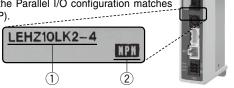
Select "Nil," "S," or "T" for DeviceNet® or CC-Link. Select "Nil," "1," "3," or "5" for parallel input.

[CE/UKCA-compliant products]

① EMC compliance was tested by combining the electric actuator LEH series and the controller LEC/JXC series.

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

[UL-compliant products (For the LEC series)]


When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

- (1) Check the actuator label for the model number. This number should match that of the controller/driver.
- ② Check that the Parallel I/O configuration matches (NPN or PNP).

Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

Compatible Controllers/Drivers

Туре	Step data input type	Programless type	Pulse input type
Series	JXC51 JXC61	LECP1	LECPA
Features	Parallel I/O	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor		Step motor (Servo/24 VDC)	
Max. number of step data	64 points	14 points	_
Power supply voltage		24 VDC	
Reference page	1017	1042	1057

	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IP™ direct input type	EtherNet/IP™ direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet® direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
Туре								Erma Cong		
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IP™ direct input	EtherNet/IP™ direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet® direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor		Step motor (Servo/24 VDC)								
Max. number of step data		64 points								
Power supply voltage		24 VDC								
Reference page					10	63				

Specifications

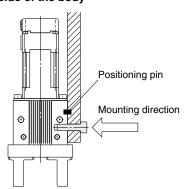
	Model		LEHZ10	LEHZ16	LEHZ20	LEHZ25	LEHZ32	LEHZ40	
	Open and close stroke/both sides [mm]		4	6	10	14	22	30	
		251/73	249/77	246/53	243/48	242/39	254/43		
	Lead [mm]		(3.438)	(3.234)	(4.642)	(5.063)	(6.205)	(5.907)	
	Gripping force Basic		6 to	14	16 to	0 40	52 to 130	84 to 210	
	[N]*1 *3	Compact	2 to 6	3 to 8	11 to	o 28	_	_	
	Open and close Pushing speed [5 to 80	/5 to 50	5 to 100)/5 to 50	5 to 120	/5 to 50	
Suc	Drive method			S	lide screw	+ Slide ca	m		
atic	Finger guide typ	е		Line	ear guide (l	No circulat	ion)		
Ę	Repeated length measurement	accuracy [mm]*4			±0.	.05			
specifications	Finger backlash/ one side [mm]*5			0.25 c	or less		0.5 or less		
힏	Repeatability [m	±0.02							
Actuator	Positioning repeatability	one side [mm]	±0.05						
Aci	Lost motion/one s	side [mm]*7		0.25 c	0.3 or less				
	Impact/Vibration resist	ance [m/s ²]*8	150/30						
	Max. operating frequ	ency [C.P.M]	60						
	Operating temperatu	re range [°C]	5 to 40						
	Operating humidity	range [%RH]	90 or less (No condensation)						
	Enclosure		IP20						
	Weight [g]	Basic	165	220	430	585	1120	1760	
	Compact		135	190	365	520	_		
Suc	Motor size			20	·	42			
atic	Motor type		Step motor (Servo/24 VDC)						
ı≝	Encoder		Incremental						
bec	Power supply vo	oltage [V]			24 VD0	C ±10%	r		
Electric specifications	Power [W]*9			ower 19	Max. po		Max. power 57	Max. power 61	
	ripping force about he	Compact		ower 14		ower 42	_		

- *1 Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be ±30% (F.S.) for LEHZ10/16, ±25% (F.S.) for LEHZ20/25 and ±20% (F.S.) for LEHZ3/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.

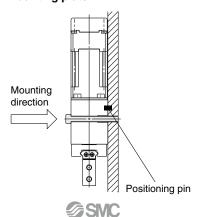
 *2 Pushing speed should be set within the range during pushing (gripping) operations. Otherwise, it may cause a malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.

 *3 The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)

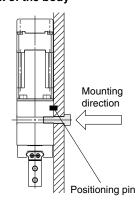
 *4 Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.


- repeatedly held in the same position.

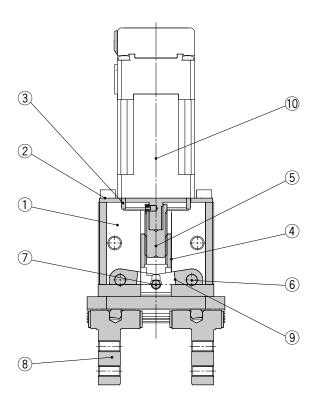
 *5 There will be no influence of backlash during pushing (gripping) operations. Make the stroke longer for the amount of
- *6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are repeatedly performed by the same sequence for the same workpiece.


 *7 A reference value for correcting errors in reciprocal operation which occur during positioning operations
- *8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
- *9 Indicates the max. power during operation (including the controller) This value can be used for the selection of the power supply.

How to Mount


a) When using the thread on the side of the body

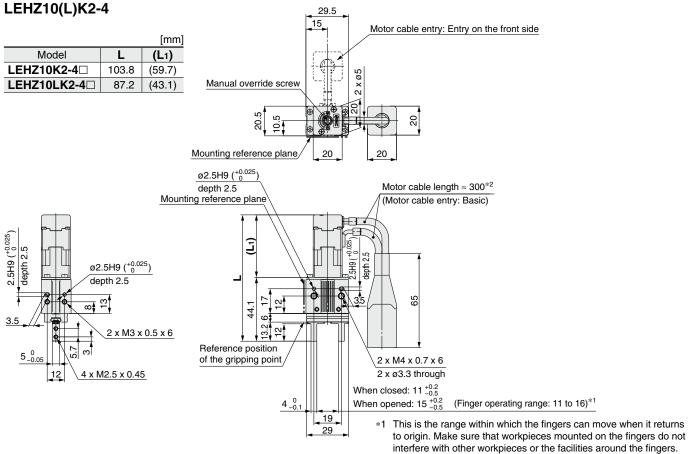
b) When using the thread on the mounting plate


c) When using the thread on the back of the body

Construction

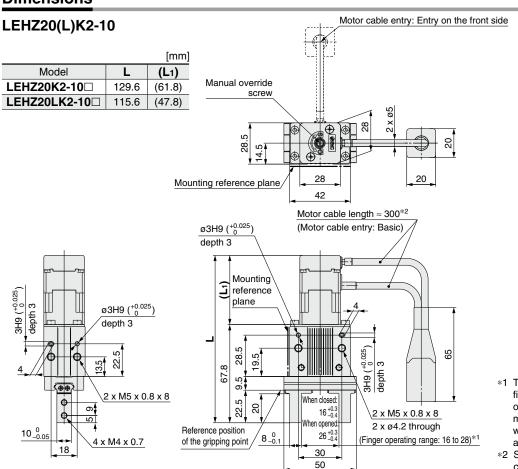
LEHZ Series

Component Parts

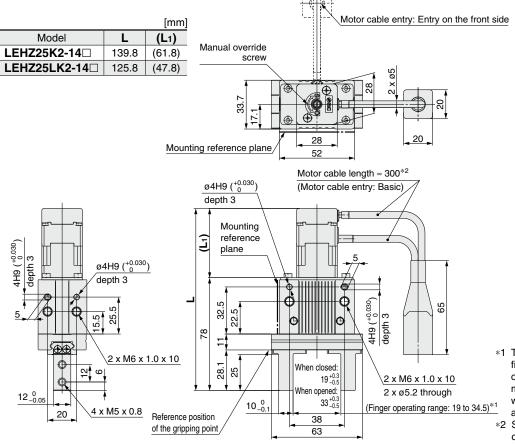

No.	Description	Material	Note	
1	Body	Aluminum alloy	Anodized	
2	Motor plate	Aluminum alloy	Anodized	
3	Guide ring	Aluminum alloy		
4	Slide nut	Slide nut Stainless steel		
5	Slide bolt	Stainless steel	Heat treatment + Special treatment	
6	Needle roller	High carbon chromium bearing steel		
7	Needle roller	High carbon chromium bearing steel		
8	Finger assembly	_		
9	Lever	Special stainless steel		
10	Step motor (Servo/24 VDC)			

Replacement Parts ® Finger Assembly


	Basic (NiI)	Side tapped mounting (A)	Through-hole in open/ close direction (B)	Flat fingers (C)
Size				
10	MHZ-AA1002	MHZ-AA1002-1	MHZ-AA1002-2	MHZ-AA1002-3
16	MHZ-AA1602	MHZ-AA1602-1	MHZ-AA1602-2	MHZ-AA1602-3
20	MHZ-AA2002	MHZ-AA2002-1	MHZ-AA2002-2	MHZ-AA2002-3
25	MHZ-AA2502	MHZ-AA2502-1	MHZ-AA2502-2	MHZ-AA2502-3
32	MHZ-A3202	MHZ-A3202-1	MHZ-A3202-2	MHZ-A3202-3
40	MHZ-A4002	MHZ-A4002-1	MHZ-A4002-2	MHZ-A4002-3

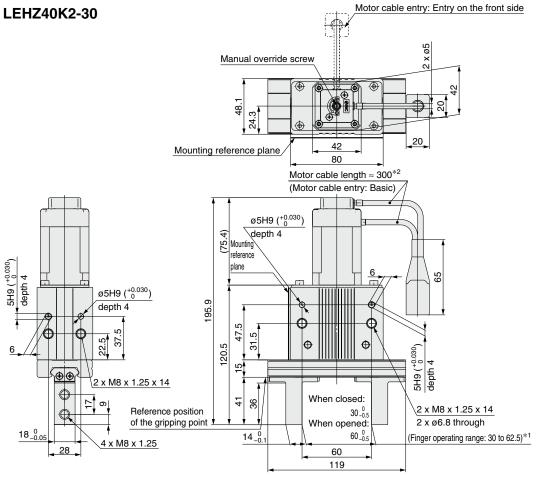


LEHZ16(L)K2-6



LEHZ25(L)K2-14

- *1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
- *2 Secure the motor cable so that the cable is not repeatedly bent.

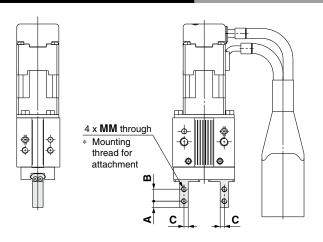


- *1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
- *2 Secure the motor cable so that the cable is not repeatedly bent.

LEHZ32K2-22 Motor cable entry: Entry on the front side Manual override screw 42.5 20 42 Mounting reference plane ø4H9 (+0.030) Motor cable length ≈ 300*2 depth 3 (Motor cable entry: Basic) Mounting 4. blaue 4H9 (+0.030) depth 3 depth 4H9 ø4H9 (+0.030) 65 depth 3 161.4 36 86 2 x M6 x 1.0 x 10 34 When closed: \2 x M6 x 1.0 x 10 26 _0.5 15_0 Reference position of the gripping point When opened: 2 x ø5.2 through 4 x M6 x 1.0 48_0.5 12_0 (Finger operating range: 26 to 49.5)*1 48

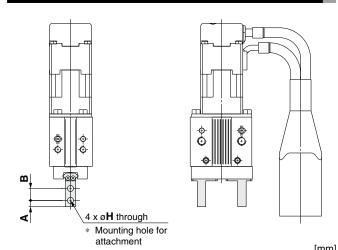
- *1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
- *2 Secure the motor cable so that the cable is not repeatedly bent.

- *1 This is the range within which the fingers can move when it returns to origin.


 Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
- *2 Secure the motor cable so that the cable is not repeatedly bent.

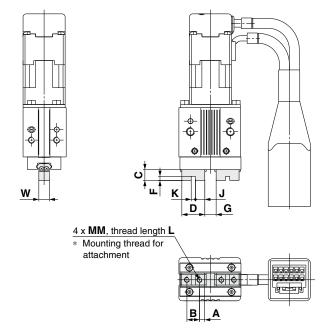
97

LEHZ Series


Finger Options

Side Tapped Mounting (A)

				[mm]
Model	Α	В	С	MM
LEHZ10(L)K2-4A□	3	5.7	2	M2.5 x 0.45
LEHZ16(L)K2-6A□	4	7	2.5	M3 x 0.5
LEHZ20(L)K2-10A□	5	9	4	M4 x 0.7
LEHZ25(L)K2-14A□	6	12	5	M5 x 0.8
LEHZ32K2-22A□	7	14	6	M6 x 1
LEHZ40K2-30A□	9	17	7	M8 x 1.25


Through-hole in Open/Close Direction (B)

			[HIIII]
Model	Α	В	Н
LEHZ10(L)K2-4B□	3	5.7	2.9
LEHZ16(L)K2-6B□	4	7	3.4
LEHZ20(L)K2-10B□	5	9	4.5
LEHZ25(L)K2-14B□	6	12	5.5
LEHZ32K2-22B□	7	14	6.6
LEHZ40K2-30B□	9	17	9

Flat Fingers (C)

825

													[mm]
Model	Α	В	С	D	F	When opened	When closed	J	K	ММ	L	w	Weight [g]
LEHZ10K2-4C□ LEHZ10LK2-4C□	2.45	6	5.2	10.9	2	5.4_0.2	1.4_0.2	4.45	2H9 ^{+0.025}	M2.5 x 0.45	5	5_0.05	165 135
LEHZ16K2-6C□ LEHZ16LK2-6C□	3.05	8	8.3	14.1	2.5	7.4_0.2	1.4_0.2	5.8	2.5H9 ^{+0.025}	M3 x 0.5	6	8_0.05	220 190
LEHZ20K2-10C□ LEHZ20LK2-10C□	3.95	10	10.5	17.9	3	11.6_0.2	1.6-0.2	7.45	3H9 ^{+0.025}	M4 x 0.7	8	10_0.05	430 365
LEHZ25K2-14C□ LEHZ25LK2-14C□	4.9	12	13.1	21.8	4	16_0.2	2_0.2	8.9	4H9 ^{+0.030}	M5 x 0.8	10	12_0.05	575 510
LEHZ32K2-22C□	7.3	20	18	34.6	5	25_0.2	3_0_0	14.8	5H9 ^{+0.030}	M6 x 1	12	15_0.05	1145
LEHZ40K2-30C□	8.7	24	22	41.4	6	33_0	3_0_0	17.7	6H9 ^{+0.030}	M8 x 1.25	16	18_0_0	1820

Gripper 2-Finger Type/With Dust Cover LEHZJ Series

Model Selection

LEHZJ Series ▶ p. 883

Selection Procedure

Check the gripping point and overhang.

Check the external force on fingers.

Step 1 Check the gripping force.

Check the conditions.

Calculate the required gripping force. Select the model from gripping force graph.

Select the pushing speed.

Example

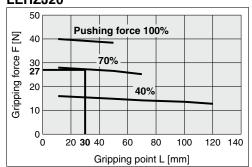
Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper with respect to workpiece mass

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times*1 the workpiece weight, or more.
- *1 For details, refer to the calculation of required gripping
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.

Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.

Required gripping force

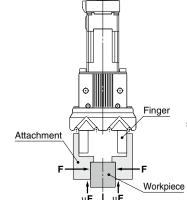

= 0.1 kg x 20 x 9.8 m/s² \approx 19.6 N or more

Pushing force: 70%

Pushing force is one of the values of step data that is input into the controller.

Gripping point distance: 30 mm

LEHZJ20



When the LEHZJ20 is selected.

- Gripping force can be found to be 27 N from the intersection point of gripping point distance L = 30 mm and pushing force of 70%
- Gripping force is 27.6 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

Pushing speed: 30 mm/s

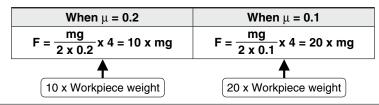
Calculation of required gripping force

When gripping a workpiece as in the figure to the left, and with the following definitions,

- F: Gripping force [N]
- $\boldsymbol{\mu} \colon$ Coefficient of friction between the attachments and the workpiece
- m: Workpiece mass [kg]
- g: Gravitational acceleration (= 9.8 m/s²)
- mg: Workpiece weight [N]

the conditions under which the workpiece will not drop are

 $2 \times \mu F > mg$


Number of fingers

and therefore, $F > \frac{mg}{2 x \mu}$

With "a" representing the margin, "F" is determined by the following formula: mg x a

"Gripping force at least 10 to 20 times the workpiece weight"

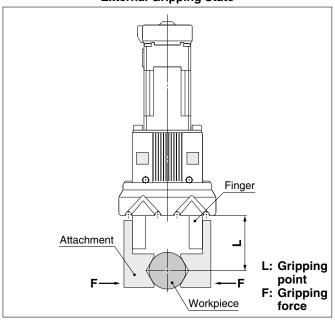
• The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" = 4, which allows for impacts that occur during normal transportation, etc.

- Pushing speed is satisfied at the point where 70% of the pushing force and 30 mm/s of the pushing speed cross.
- * Confirm the pushing speed range from the determined pushing force [%].

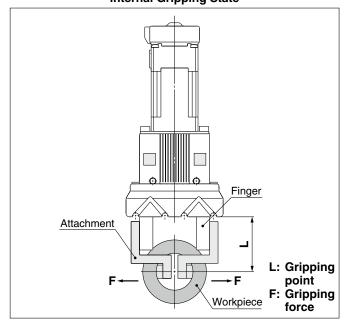
<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)

Coefficient of friction $\boldsymbol{\mu}$	Attachment – Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

- Even in cases where the coefficient of friction is greater than μ = 0.2, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.
- If high acceleration or impact forces are encountered during motion, a further margin should be considered.


Step 1 Check the gripping force: LEHZJ Series

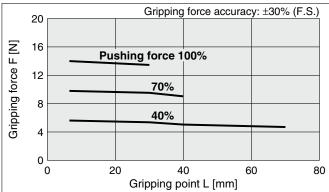
• Indication of gripping force


The gripping force shown in the graphs below is expressed as "F", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

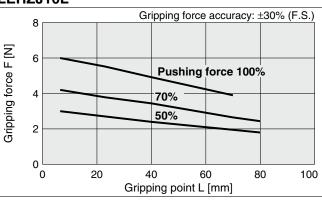
 Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

External Gripping State

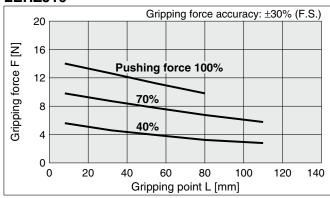
Internal Gripping State

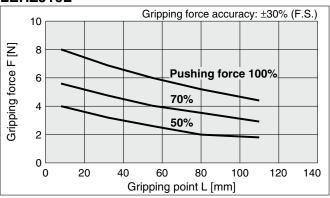

Basic

* Pushing force is one of the values of step data that is input into the controller.


Compact

 Pushing force is one of the values of step data that is input into the controller.

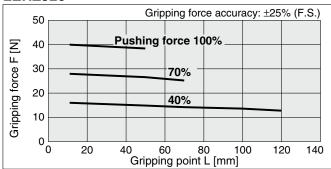

LEHZJ10


LEHZJ10L

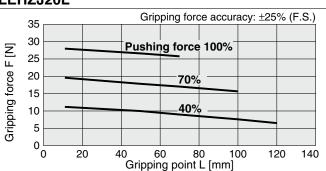
LEHZJ16

LEHZJ16L

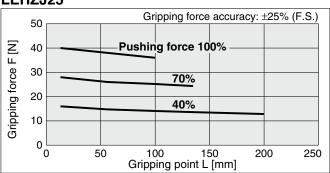
Step 1 Check the gripping force: LEHZJ Series

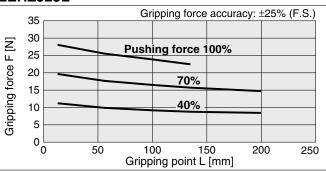

Basic

* Pushing force is one of the values of step data that is input into the controller.


Compact

 Pushing force is one of the values of step data that is input into the controller.

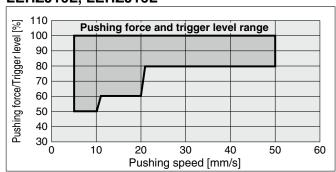

LEHZJ20


LEHZJ20L

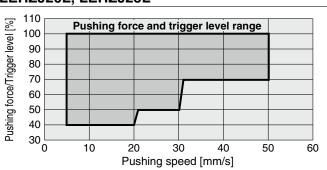
LEHZJ25

LEHZJ25L

Selection of Pushing Speed


• Set the [Pushing force] and [Trigger level] within the range shown in the figure below.

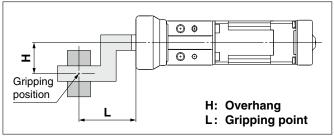
Basic



Compact

LEHZJ10L, LEHZJ16L

LEHZJ20L, LEHZJ25L

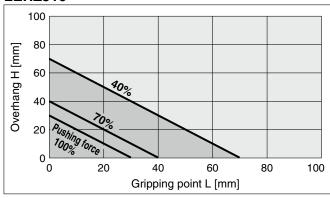



Step 2 Check the gripping point and overhang: LEHZJ Series

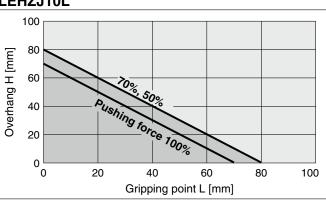
- Decide the gripping position of the workpiece so that the amount of overhang "H" stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

External Gripping State

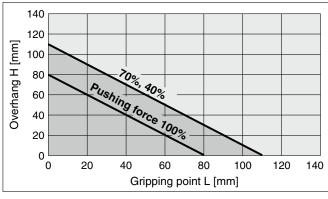
Internal Gripping State

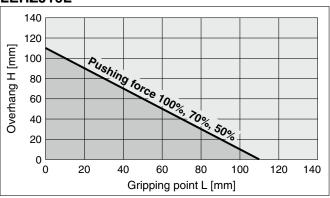

Basic

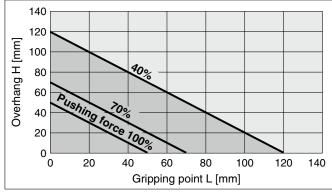
 Pushing force is one of the values of step data that is input into the controller.

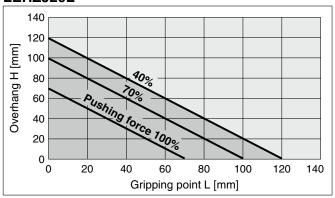

Compact

* Pushing force is one of the values of step data that is input into the controller.


LEHZJ10


LEHZJ10L

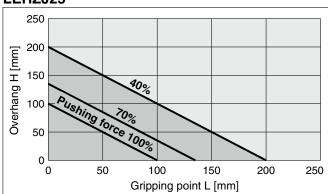

LEHZJ16


LEHZJ16L

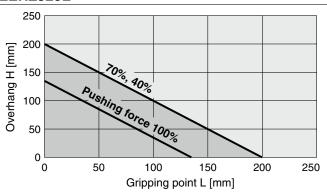
LEHZJ20

LEHZJ20L

Step 2 Check the gripping point and overhang: LEHZJ Series

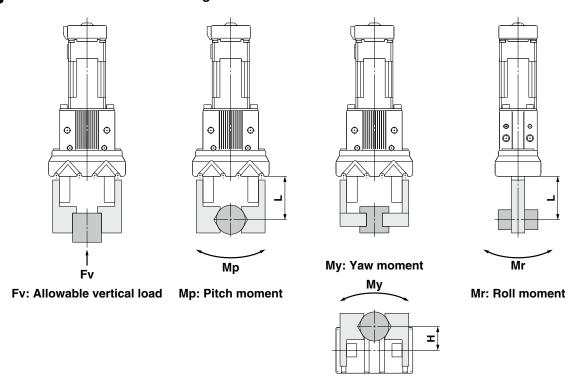

Basic

* Pushing force is one of the values of step data that is input into the controller.


Compact

* Pushing force is one of the values of step data that is input into the controller.

LEHZJ25



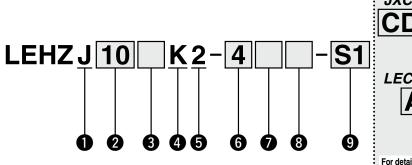
LEHZJ25L

Step 3 Check the external force on fingers: LEHZJ Series -

H, L: Distance to the point at which the load is applied [mm]

Model	Allowable vertical load	ole vertical load Static allowable moment					
Fv [N]		Pitch moment: Mp [N·m]	Yaw moment: My [N·m]	Roll moment: Mr [N·m]			
LEHZJ10(L)K2-4	58	0.26	0.26	0.53			
LEHZJ16(L)K2-6	98	0.68	0.68	1.36			
LEHZJ20(L)K2-10	147	1.32	1.32	2.65			
LEHZJ25(L)K2-14	255	1.94	1.94	3.88			

^{*} Values for load in the table indicate static values.


Calculation of allowable external force (when moment load is applied)	Calculation example
Allowable load F [N] = $\frac{M \text{ (Static allowable moment) [N·m]}}{L \times 10^{-3}} \times 1$ (*1 Constant for unit conversion)	When a static load of f = 10 N is operating, which applies pitch moment to point L = 30 mm from the LEHZJ16K2-6 guide. Therefore, it can be used.

Gripper 2-Finger Type With Dust Cover

LEHZJ Series LEHZJ10, 16, 20, 25

How to Order

JXC□ se	
LEC Se	_ — —
For details on co	ntrollers, refer to page 834.

Dust cover		
J	With dust cover	

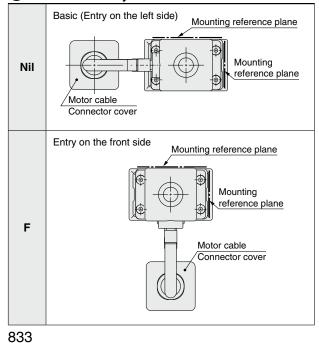
2 Siz	e
10	
16	
20	
25	

3	Мо	tor	size	

Nil	Basic
L	Compact

4 Lea	ad
K	Basic

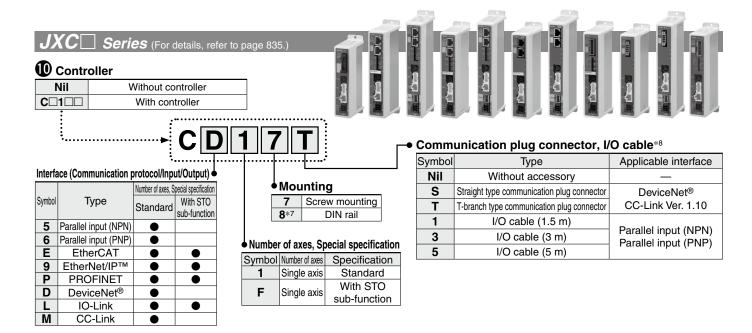
5 2-finger type

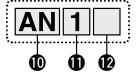

6	Stroke	[mm]
---	--------	------

Stroke/both sides	Size
4	10
6	16
10	20
14	25

7 Dust cover type

	,
Nil	Chloroprene rubber (CR)
K	Fluororubber (FKM)
S	Silicone rubber (Si)


Motor cable entry


9 Actuator cable type/length*2

Standard cable [m]		
Nil	None	
S1	1.5	
S3	3	
S5	5	

Robotic	cable		[m]
R1	1.5	RA	10*1
R3	3	RB	15* ¹
R5	5	RC	20*1
B8	8*1		

Controller/Driver type*3

Nil	Without controller/driver	
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA*4	NPN
AP	(Pulse input type)	

I/O cable length*5

Nil	Without cable (Without communication plug connector)
1	1.5 m
3	3 m*6
5	5 m*6

(2) Controller/Driver mounting

Nil	Screw mounting
D	DIN rail* ⁷

- *1 Produced upon receipt of order (Robotic cable only)
- *2 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to the Web Catalog if only the actuator cable is required.
- *3 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.
- *4 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R-□) on page 1062 separately.
- *5 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. If an I/O cable is required, refer to the cable for the LECP1 (Web Catalog) or LECPA (Web Catalog).
- *6 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
- *7 The DIN rail is not included. It must be ordered separately.
- *8 Select "Nil" for anything other than DeviceNet®, CC-Link, or parallel

Select "Nil," "S," or "T" for DeviceNet® or CC-Link. Select "Nil," "1," "3," or "5" for parallel input.

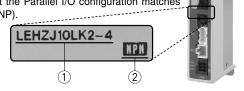
∕ Caution

[CE/UKCA-compliant products]

① EMC compliance was tested by combining the electric actuator LEH series and the controller LEC/JXC series.

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

[UL-compliant products (For the LEC series)]


When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

- 1) Check the actuator label for the model number. This number should match that of the controller/driver.
- 2 Check that the Parallel I/O configuration matches (NPN or PNP).

Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

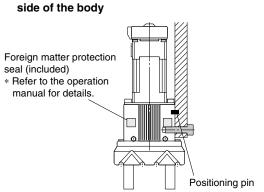
Compatible Controllers/Drivers

Туре	Step data input type	Programless type	Pulse input type						
Series	JXC51 JXC61	LECP1	LECPA						
Features	Parallel I/O	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals						
Compatible motor		Step motor (Servo/24 VDC)							
Max. number of step data	64 points	14 points	_						
Power supply voltage		24 VDC							
Reference page	1017	1042	1057						

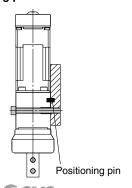
	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IP™ direct input type	EtherNet/IP™ direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet® direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
Туре							Second Street, Second Second			
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IP™ direct input	EtherNet/IP™ direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet® direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

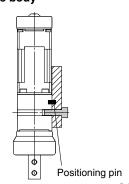
Model			LEHZJ10	LEHZJ16	LEHZJ20	LEHZJ25		
	Open and close stroke/b	oth sides [mm]	4	6	10	14		
	Lead [mm]		251/73 (3.438)	249/77 (3.234)	246/53 (4.642)	243/48 (5.063)		
	Gripping force	Basic	6 to 14		16 to 40			
	[N]*1 *3	Compact	3 to 6	4 to 8	11 to 28			
	Open and close speed/Pushing	speed [mm/s]*2 *3	5 to 80	5 to 80/5 to 50 5 to 100/5 to 50				
က္က	Drive method			Slide screw	+ Slide cam			
io	Finger guide type			Linear guide (I	No circulation)			
cal	Repeated length measuremen	t accuracy [mm]*4		±0.	.05			
Actuator specification	Finger backlash/ one side [mm]*5		0.25 or less					
r S	Repeatability [mm]	*6	±0.02					
atc	Positioning repeatability	/one side [mm]	±0.05					
5	Lost motion/one sid		0.25 or less					
⋖	Impact/Vibration resista	nce [m/s²]*8	150/30					
	Max. operating frequ	ency [C.P.M]						
	Operating temperatu	ıre range [°C]						
	Operating humidity	range [%RH]	90 or less (No condensation)					
	Enclosure		Equivalent to IP50					
	Weight [g]	Basic	170	230	440	610		
	Weight [9]	Compact	140	200	375	545		
ous	Motor size		□20 □28					
cati	Motor type		Step motor (Servo/24 VDC)					
Electric specifications	Encoder		Incremental					
c sp	Power supply volta	age [V]	24 VDC ±10%					
cţi	Power [W]*9	Basic	<u> </u>	ower 19	Max. power 51			
음	. 6461 [11]	Compact	Max. power 14 Max.			ower 42		


- *1 Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30\%$ (F.S.) for LEHZJ10/16 and $\pm 25\%$ (F.S.) for LEHZJ20/25. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
- *2 Pushing speed should be set within the range during pushing (gripping) operations. Otherwise, it may cause a malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.

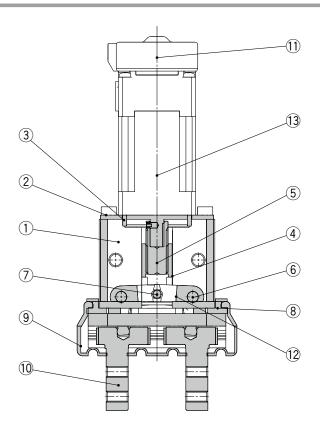
 *3 The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if
- the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)
- *4 Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
- *5 There will be no influence of backlash during pushing (gripping) operations. Make the stroke longer for the amount
- of backlash when opening.


 *6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are repeatedly performed by the same sequence for the same workpiece.
- *7 A reference value for correcting errors in reciprocal operation which occur during positioning operations
- *8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
- *9 Indicates the max. power during operation (including the controller) This value can be used for the selection of the power supply.

How to Mount


a) When using the thread on the

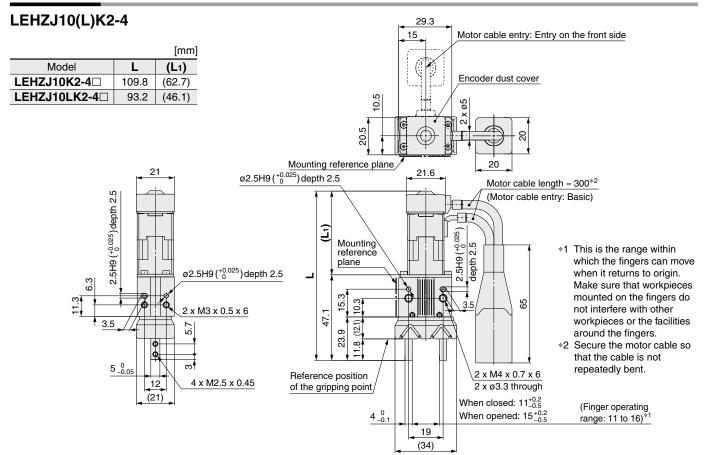
b) When using the thread on the mounting plate

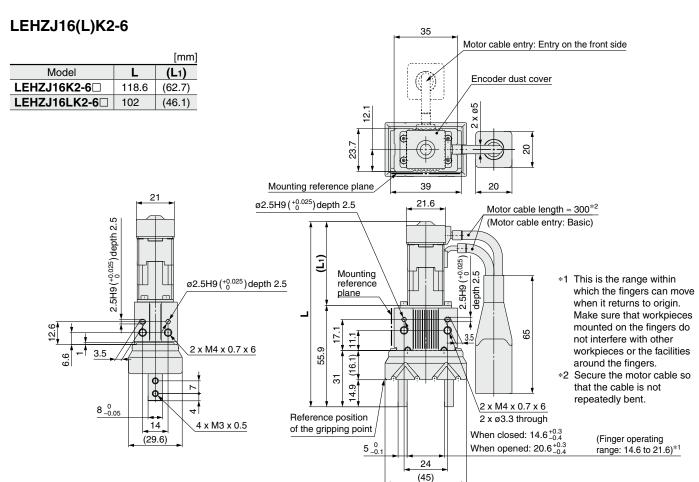

c) When using the thread on the back of the body

Construction

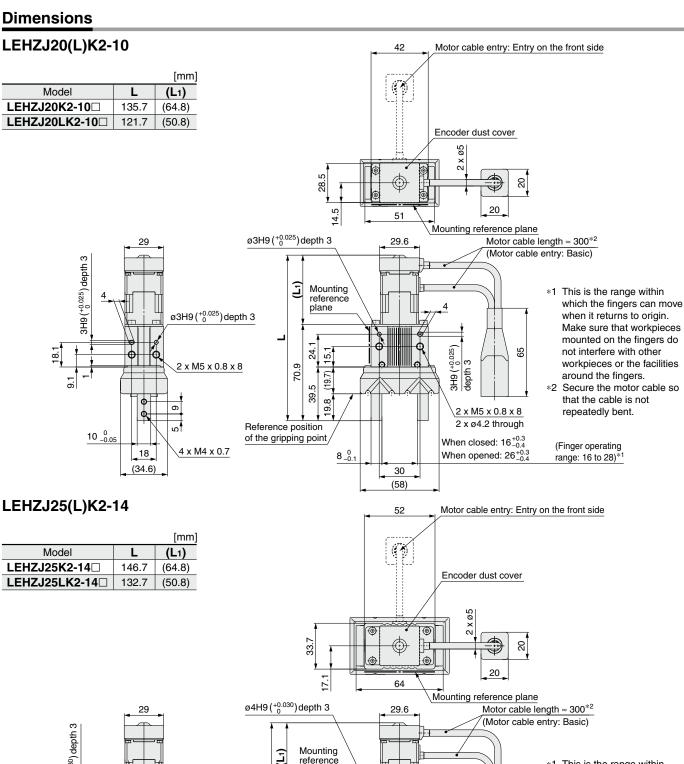
LEHZJ Series

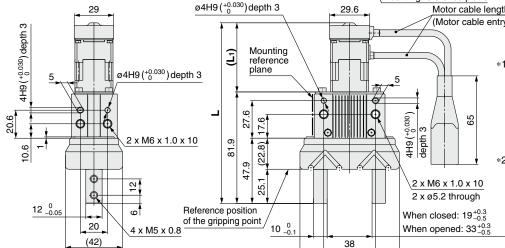
Component Parts


No.	Description	Material	Note	
1	Body	Aluminum alloy	Anodized	
2	Motor plate	Aluminum alloy	Anodized	
3	Guide ring	Aluminum alloy		
4	Slide nut	Stainless steel	Heat treatment + Special treatment	
5	Slide bolt	Stainless steel	Heat treatment + Special treatment	
6	Needle roller	High carbon chromium bearing steel		
7	Needle roller	High carbon chromium bearing steel		
8	Body plate	Aluminum alloy	Anodized	
		CR	Chloroprene rubber	
9	Dust cover	FKM	Fluororubber	
		Si	Silicone rubber	
10	Finger assembly	_		
11	Encoder dust cover	Si	Silicone rubber	
12	Lever	Special stainless steel		
13	Step motor (Servo/24 VDC)	_		


Replacement Parts

No.	Description			LEHZJ10	LEHZJ16	LEHZJ20	LEHZJ25
9	Dust cover		CR	MHZJ2-J10	MHZJ2-J16	MHZJ2-J20	MHZJ2-J25
		Material FKM Si	FKM	MHZJ2-J10F	MHZJ2-J16F	MHZJ2-J20F	MHZJ2-J25F
			MHZJ2-J10S	MHZJ2-J16S	MHZJ2-J20S	MHZJ2-J25S	
10	Finger assembly			MHZJ-AA1002	MHZJ-AA1602	MHZJ-AA2002	MHZJ-AA2502


^{*} The dust cover is a consumable part. Please replace as necessary.



- *1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
- Secure the motor cable so that the cable is not repeatedly bent.

(Finger operating range: 19 to 34.5)*1

(73)

LEHF□E Series > p. 849

Selection Procedure

Step 1 Check the gripping force. Step 2 Check the gripping point and overhang. Step 3 Check the external force on fingers.

Step 1 Check the gripping force.

Check the conditions.

Calculate the required gripping force.

Select the model from gripping force graph.

Select the pushing speed.

Example Workpiece mass: 0.5 kg

Guidelines for the selection of the gripper with respect to workpiece mass

• Although conditions differ according to the workpiece

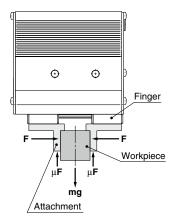
- shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times*1 the workpiece weight, or more.
- *1 For details, refer to the model selection illustration.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.

Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.

Required gripping force = 0.5 kg x 20 x 9.8 m/s² \approx 98 N or more

Pushing force: 100%

Gripping point distance: 30 mm


LEHF32 Gripping force accuracy: ±20% (F.S.) 150 Gripping force F [N] 120 **108** Pushing force 100% 90 70% 60 40% 30 20 100 0 30 40 60 80 Gripping point L [mm]

When the LEHF32 is selected.

- Gripping force can be found to be 108 N from the intersection point of gripping point distance L = 30 mm and pushing force of 100%.
- Gripping force is 22 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

Pushing speed: 20 mm/s

Calculation of required gripping force

When gripping a workpiece as in the figure to the left, and with the following definitions,

- F: Gripping force [N]
- μ: Coefficient of friction between the attachments and the workpiece
- m: Workpiece mass [kg]
- g: Gravitational acceleration (= 9.8 m/s²)

mg: Workpiece weight [N]

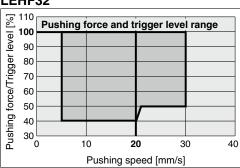
the conditions under which the workpiece will not drop are

 $2 \times \mu F > mg$

Number of fingers

and therefore, F > $\frac{\text{mg}}{\text{2 x }\mu}$

With "a" representing the margin,
"F" is determined by the following formula:


 $F = \frac{mg}{2 \times \mu} \times a$

"Gripping force at least 10 to 20 times the workpiece weight"

• The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" = 4, which allows for impacts that occur during normal transportation, etc.

When μ = 0.2	When μ = 0.1
$F = \frac{mg}{2 \times 0.2} \times 4 = 10 \times mg$	$F = \frac{mg}{2 \times 0.1} \times 4 = 20 \times mg$
10 x Workpiece weight	20 x Workpiece weight

LEHF32

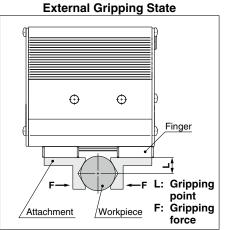
- Pushing speed is satisfied at the point where 100% of the pushing force and 20 mm/s of the pushing speed cross.
- * Confirm the pushing speed range from the determined pushing force [%].

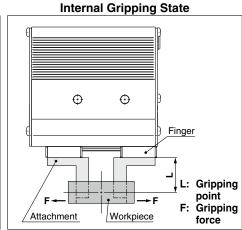
<Reference> Coefficient of friction µ (depends on the operating environment, contact pressure, etc.)

Coefficient of friction μ	Attachment – Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.
	0.1

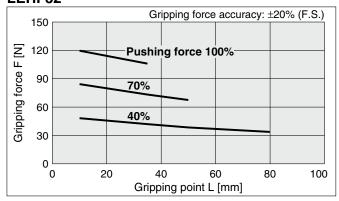
- Even in cases where the coefficient of friction is greater than μ = 0.2, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.
- greater than the workpiece weight, as recommended by SMC.

 If high acceleration or impact forces are encountered during motion, a further margin should be considered.

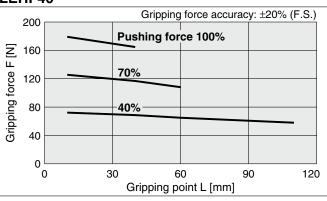



Step 1 Check the gripping force: LEHF Series

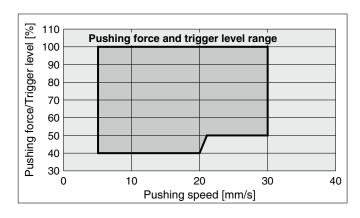
• Indication of gripping force


Gripping force shown in the graphs below is expressed as "F", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

• Set the workpiece gripping point "L" so that it is within the range shown in the figure below.



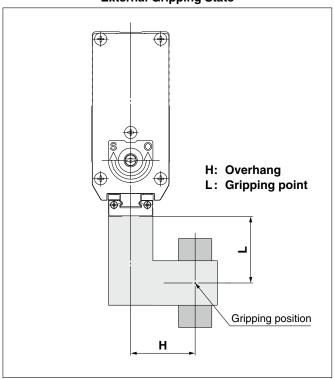
LEHF32

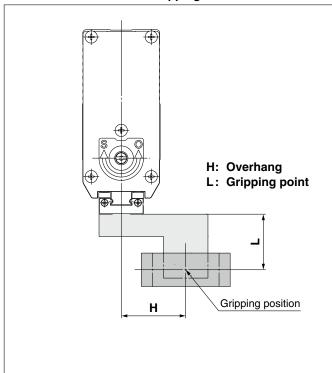

LEHF40

* Pushing force is one of the values of step data that is input into the controller.

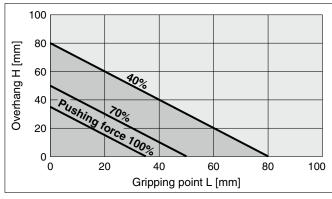
Selection of Pushing Speed

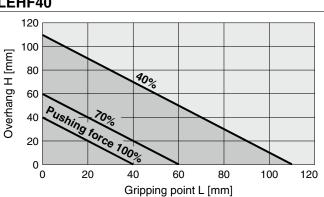
• Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.



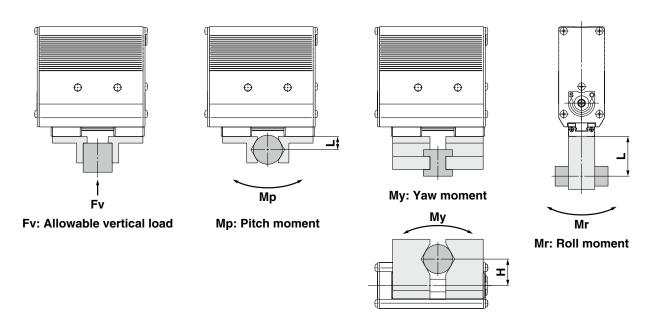

Step 2 Check the gripping point and overhang: LEHF Series

- Decide the gripping position of the workpiece so that the amount of overhang "H" stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.


External Gripping State


Internal Gripping State

LEHF32


LEHF40

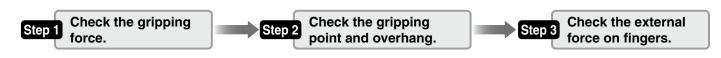
* Pushing force is one of the values of step data that is input into the controller.

Step 3 Check the external force on fingers: LEHF Series -

H, L: Distance to the point at which the load is applied [mm]

11, 21 Plotation to the point at miles are applied [min]				
Allowable vertical load		Static allowable moment		
Model	Fv [N]	Pitch moment: Mp [N·m]	Yaw moment: My [N·m]	Roll moment: Mr [N·m]
LEHF32EK2-□	176	1.4	1.4	2.8
LEHF40EK2-□	294	2	2	4

^{*} Values for load in the table indicate static values.


Calculation of allowable external force (when moment load is applied)	Calculation example
Allowable load F [N] = $\frac{M \text{ (Static allowable moment) [N·m]}}{L \times 10^{-3}}^{*1}$ (*1 Constant for unit conversion)	When a static load of f = 10 N is operating, which applies pitch moment to point L = 30 mm from the LEHF20K2- \square guide. Therefore, it can be used.

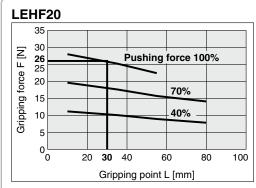
Model Selection

Selection Procedure

Step 1 Check the gripping force.

Example Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper with respect to workpiece mass

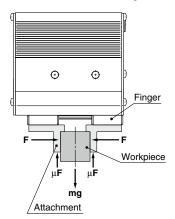

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times*1 the workpiece weight, or more.
- *1 For details, refer to the model selection illustration.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.

Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.

Required gripping force = 0.1 kg x 20 x 9.8 m/s² \approx 19.6 N or more

Pushing force: 100%

Gripping point distance: 30 mm



When the LEHF20 is selected.

- Gripping force can be found to be 26 N from the intersection point of gripping point distance L = 30 mm and pushing force of 100%.
- Gripping force is 26.5 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

Pushing speed: 20 mm/s

Calculation of required gripping force

When gripping a workpiece as in the figure to the left, and with the following definitions,

- F: Gripping force [N]
- $\boldsymbol{\mu} \colon$ Coefficient of friction between the attachments and the workpiece
- m: Workpiece mass [kg]
- g: Gravitational acceleration (= 9.8 m/s²)
- mg: Workpiece weight [N]

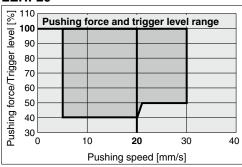
the conditions under which the workpiece will not drop are

 $2 \times \mu F > mg$

Number of fingers

and therefore, F > $\frac{\text{mg}}{\text{2 x }\mu}$

With "a" representing the margin, "F" is determined by the following formula:


mg $F = \frac{1}{2 \times \mu}$

"Gripping force at least 10 to 20 times the workpiece weight"

• The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" = 4, which allows for impacts that occur during normal transportation, etc.

When μ = 0.2	When μ = 0.1	
$F = \frac{mg}{2 \times 0.2} \times 4 = 10 \times mg$	$F = \frac{mg}{2 \times 0.1} \times 4 = 20 \times mg$	
10 x Workpiece weight	20 x Workpiece weight	

LEHF20

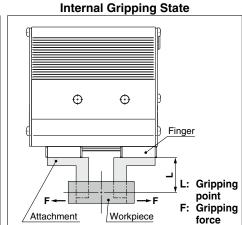
- Pushing speed is satisfied at the point where 100% of the pushing force and 20 mm/s of the pushing speed cross.
- Confirm the pushing speed range from the determined pushing force [%].

<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)

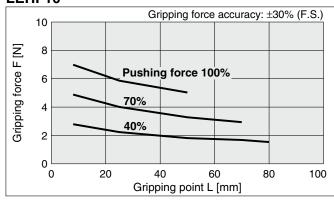
Coefficient of friction μ	Attachment – Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.
	0.1

- \bullet Even in cases where the coefficient of friction is greater than μ = 0.2, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.

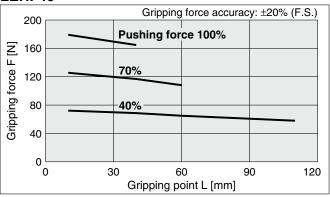
 • If high acceleration or impact forces are encountered during motion,
 - a further margin should be considered.

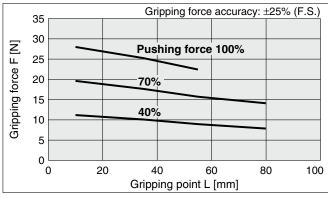

Step 1 Check the gripping force: LEHF Series

• Indication of gripping force

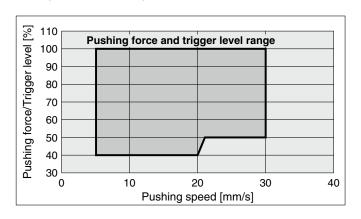

Gripping force shown in the graphs below is expressed as "F", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

 Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

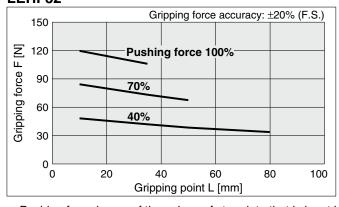

External Gripping State Finger Finger L: Gripping point F: Gripping force


LEHF10

LEHF40



LEHF20

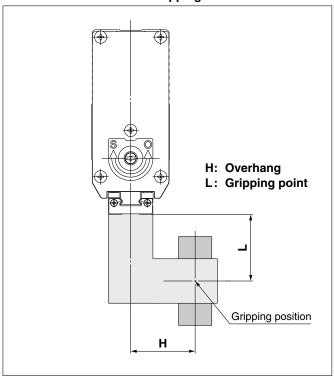


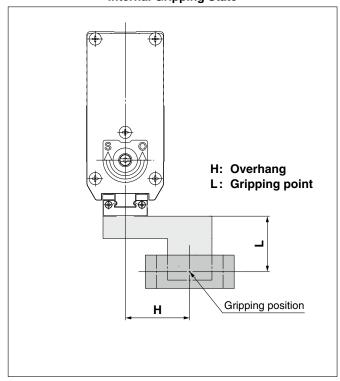
Selection of Pushing Speed

 Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

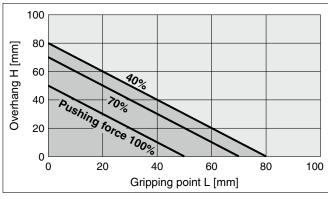
LEHF32

 $[\]ast\,$ Pushing force is one of the values of step data that is input into the controller.

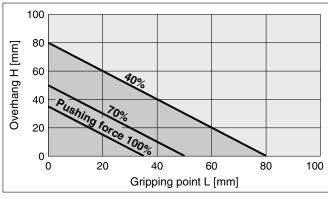


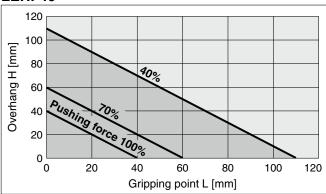

Step 2 Check the gripping point and overhang: LEHF Series

- Decide the gripping position of the workpiece so that the amount of overhang "H" stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

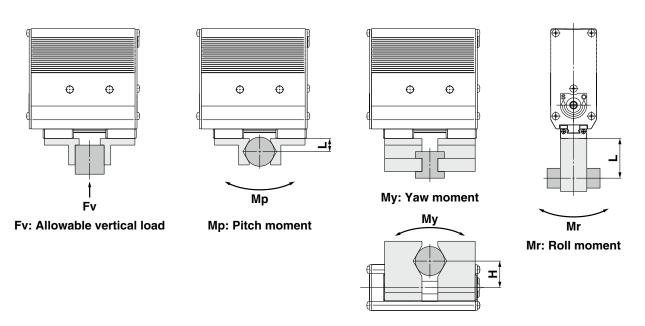

External Gripping State


Internal Gripping State


LEHF10


LEHF20

LEHF32


LEHF40

* Pushing force is one of the values of step data that is input into the controller.

Step 3 Check the external force on fingers: LEHF Series -

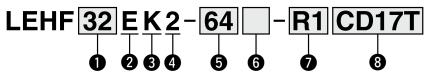
H, L: Distance to the point at which the load is applied [mm]

Ti, E. Distance to the point at which the load is applied [min]				
Allowable vertical load		Static allowable moment		
Model	Fv [N]	Pitch moment: Mp [N·m]	Yaw moment: My [N·m]	Roll moment: Mr [N·m]
LEHF10K2-□	58	0.26	0.26	0.53
LEHF20K2-□	98	0.68	0.68	1.4
LEHF32K2-□	176	1.4	1.4	2.8
LEHF40K2-□	294	2	2	4

^{*} Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
Allowable load F [N] = $\frac{M \text{ (Static allowable moment) [N·m]}}{L \times 10^{-3}}^{*1}$ (*1 Constant for unit conversion)	When a static load of f = 10 N is operating, which applies pitch moment to point L = 30 mm from the LEHF20K2- \square guide. Therefore, it can be used.

Battery-less Absolute (Step Motor 24 VDC)


Gripper

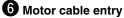
LEHF Series LEHF32, 40

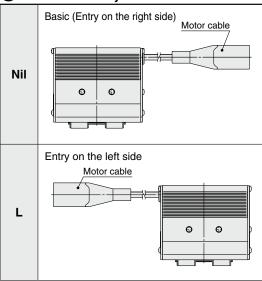
How to Order

For details on controllers, refer to the next page.

1 Size

32 40

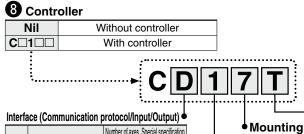

2 Motor type						
Symbol	Type	Compatib	le controlle	rs/drivers		
E	Battery-less absolute (Step motor 24 VDC)	JXC51 JXC61 JXCE1 JXC91	JXCP1 JXCD1 JXCL1 JXCM1	JXCEF JXC9F JXCPF JXCLF		


3 Lead
K Basic

4 2-finger type

5 Stroke [mm]

Stroke/both sides		Size
Basic	Basic Long stroke	
32	64	32
40	80	40



Actuator cable type/length

cable		[m]
None	R8	8*1
1.5	RA	10* ¹
3	RB	15*1
5	RC	20*1
	None 1.5 3	None R8 1.5 RA 3 RB

moraco (communication protector, input cutput)				
		Number of axes, S	pecial specification	
Symbol	Type	Standard	With STO	
		Stariuaru	sub-function	
5	Parallel input (NPN)	•		
6	Parallel input (PNP)	•		
Е	EtherCAT	•	•	
9	EtherNet/IP™	•	•	
Р	PROFINET	•	•	
D	DeviceNet®	•		
L	IO-Link	•	•	
M	CC-Link	•		

7 Screw mounting
8*2 DIN rail

● Number of axes, Special specification

Symbol Number of axes Specification

1 Single axis Standard

F Single axis With STO sub-function

• Communication plug connector, I/O cable*3

Symbol	Type	Applicable interface
Nil	Without accessory	_
S	Straight type communication plug connector	DeviceNet®
Т	T-branch type communication plug connector	CC-Link Ver. 1.10
1	I/O cable (1.5 m)	Dorollol input (NIDNI)
3	I/O cable (3 m)	Parallel input (NPN) Parallel input (PNP)
5	I/O cable (5 m)	rafallel lliput (FINF)

- *1 Produced upon receipt of order
- *2 The DIN rail is not included. It must be ordered separately.

⚠ Caution

[CE/UKCA-compliant products]

EMC compliance was tested by combining the electric actuator LEH series and the controller JXC series.

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

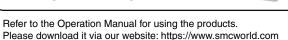
[Precautions relating to differences in controller versions]

When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 1077 and 1078.

[UL certification]

The JXC series controllers used in combination with electric actuators are UL certified.

- *3 Select "Nil" for anything other than DeviceNet®, CC-Link, or parallel input.
 - Select "Nil," "S," or "T" for DeviceNett® or CC-Link. Select "Nil," "1," "3," or "5" for parallel input.


The actuator and controller are sold as a package.

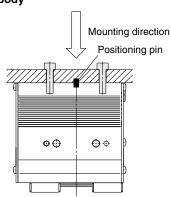
Confirm that the combination of the controller and actuator is correct.

<Check the following before use.>

- Check the actuator label for the model number.
 This number should match that of the controller.
- ② Check that the Parallel I/O configuration matches (NPN or PNP).

	Step data input type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IP™ direct input type	EtherNet/IP™ direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet® direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
Туре											
Series	JXC51 JXC61	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	Parallel I/O	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IP™ direct input	EtherNet/IP™ direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet® direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)										
Max. number of		64 points									
step data		<u>'</u>									
Power supply voltage						24 VDC					
Reference page	1017					10	63				

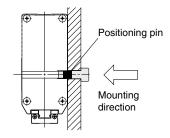
Specifications


Battery-less Absolute (Step Motor 24 VDC)

	Mode	el .	LEHF32E	LEHF40E		
	Open and close	Basic	32	40		
	stroke/both sides [mm]	Long stroke	64	80		
	Lead [mm]		70/16	70/16		
	Lead [IIIII]		(4.375)	(4.375)		
	Gripping force [N]*1 *3		48 to 120	72 to 180		
	Open and close speed/Pu	shing speed [mm/s]*2 *3	5 to 100	/5 to 30		
Su	Drive method		Slide scre	ew + Belt		
atic	Finger guide type		Linear guide (I	No circulation)		
ţi	Repeated length measur	rement accuracy [mm]*4	±0.	.05		
specifications	Finger backlash/or		0.5 o	rless		
ds.	Repeatability [mm]]*6	±0.05			
Actuator	Positioning repeatal	bility/one side [mm]	±0.1			
tue	Lost motion/one s	ide [mm]*7	0.3 or less			
Ac	Impact/Vibration re	esistance [m/s²]*8	150/30			
	Max. operating fre	quency [C.P.M]	60			
	Operating tempera	ture range [°C]	5 to	40		
	Operating humidit	y range [%RH]	90 or less (No			
	Enclosure		IP	20		
	Weight [g]	Basic	1625	1980		
	Weight [g]	Long stroke	1970	2500		
ions	Motor size			· -		
ificat	Motor type		Battery-less absolute			
Electric specifications	Encoder		Battery-les	s absolute		
tric	Power supply volta	age [V]	24 VDC ±10%			
E	Power [W]*9		Max. power 57	Max. power 61		

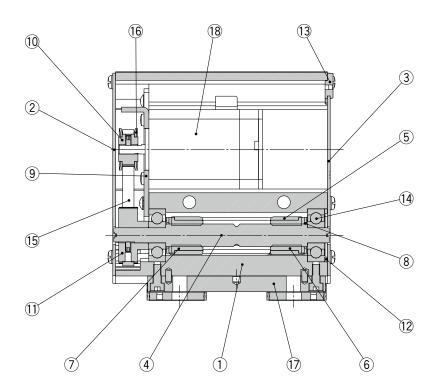
- *1 Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 20\%$ (F.S.) for LEHF32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
- *2 Pushing speed should be set within the range during pushing (gripping) operations. Otherwise, it may cause a malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
- The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)
- Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
- There will be no influence of backlash during pushing (gripping) operations. Make the stroke longer for the amount of backlash when opening.
- *6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are repeatedly performed by the same sequence for the same workpiece.
- A reference value for correcting errors in reciprocal operation which occur during positioning operations
- *8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
 - Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
- *9 Indicates the max. power during operation (including the controller) This value can be used for the selection of the power supply.

How to Mount

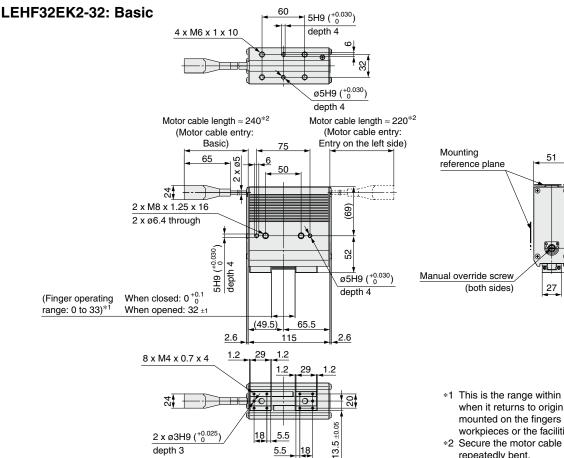

a) When using the thread on the body

b) When using the thread on the mounting plate

Positioning pin Mounting direction

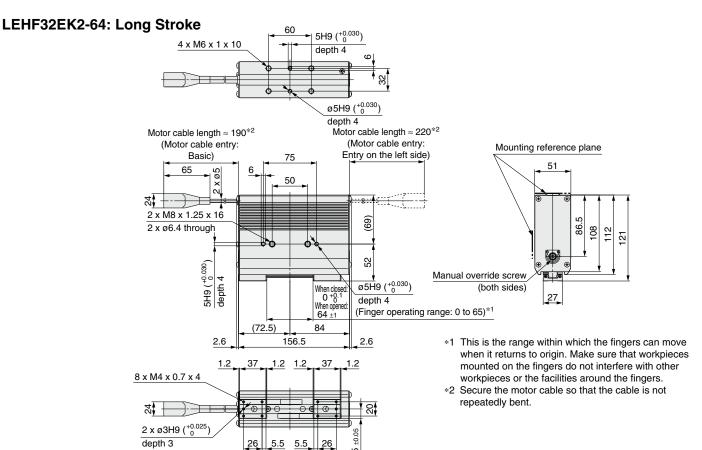

c) When using the thread on the back of the body

Construction

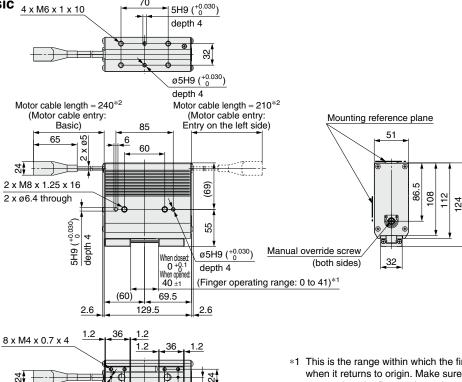

LEHF Series

Component Parts

COIII	Component Parts										
No.	Description	Material	Note								
1	Body	Aluminum alloy	Anodized								
2	Side plate A	Aluminum alloy	Anodized								
3	Side plate B	Aluminum alloy	Anodized								
4	Slide shaft	Stainless steel	Heat treatment + Special treatment								
5	Slide bushing	Stainless steel									
6	Slide nut	Stainless steel	Heat treatment + Special treatment								
7	Slide nut	Stainless steel	Heat treatment + Special treatment								
8	Fixed plate	Stainless steel									
9	Motor plate	Carbon steel									
10	Pulley A	Aluminum alloy									
11	Pulley B	Aluminum alloy									
12	Bearing stopper	Aluminum alloy									
13	Rubber bushing	NBR									
14	Bearing	_									
15	Belt	_									
16	Flange	_									
17	Finger assembly	_									
18	Battery-less absolute (Step motor 24 VDC)	_									

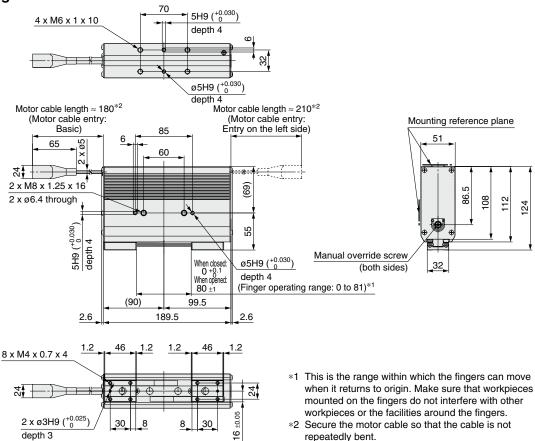


*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.


108 112 121

*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHF40EK2-40: Basic _{4 x M6 x 1 x 10}


- *1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
- *2 Secure the motor cable so that the cable is not repeatedly bent.

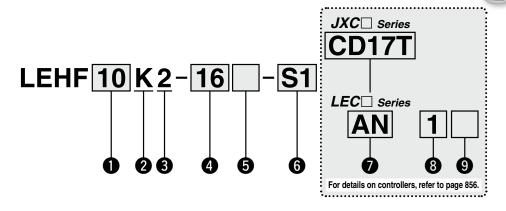
LEHF40EK2-80: Long Stroke

2 x ø3H9 (+0.025

depth 3

8 8

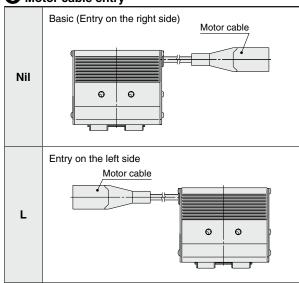
Incremental (Step Motor 24 VDC)


Gripper 2-Finger Type

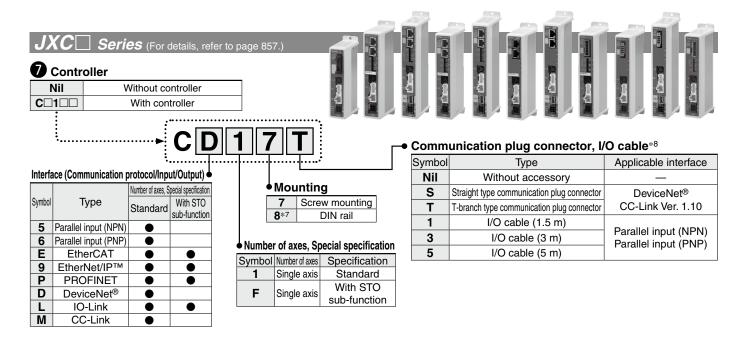
* For details, refer to page 1343 and onward

LEHF Series LEHF10, 20, 32, 40

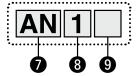
How to Order



3 2-finger type


4 Stroke [mm]							
Stroke/b	Size						
Basic	Long stroke	Size					
16	32	10					
24	48	20					
32	64	32					
40	80	40					

6 Motor cable entry



6 Actuator cable type/length*2

Standard cable [m]			Robotic	cable	[m		
Nil	None		R1	1.5	RA	10*1	
S1	1.5		R3	3	RB	15* ¹	
S3	3		R5	5	RC	20*1	
S5	5		R8	8*1			

eries (For details, refer to page 857.)

Controller/Driver type*3

Nil	Without controller/driver					
1N	LECP1	NPN				
1P	(Programless type)					
AN	LECPA*4	NPN				
AP	(Pulse input type)	PNP				

8 I/O cable length*5

Nil	Without cable (Without communication plug connector)
1	1.5 m
3	3 m* ⁶
5	5 m* ⁶

9 Controller/Driver mounting

Nil	Screw mounting
D	DIN rail* ⁷

- *1 Produced upon receipt of order (Robotic cable only)
- *2 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to the Web Catalog if only the actuator cable is required.
- *3 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.
- *4 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R-□) on page 1062 separately.
- *5 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. If an I/O cable is required, refer to the cable for the LECP1 (Web Catalog) or LECPA (Web Catalog).
- *6 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
- *7 The DIN rail is not included. It must be ordered separately.
- *8 Select "Nil" for anything other than DeviceNet®, CC-Link, or parallel

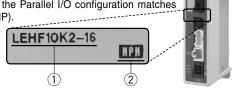
Select "Nil," "S," or "T" for DeviceNet® or CC-Link. Select "Nil," "1," "3," or "5" for parallel input.

[CE/UKCA-compliant products]

1) EMC compliance was tested by combining the electric actuator LEH series and the controller LEC/JXC series.

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

[UL-compliant products (For the LEC series)]


When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

- (1) Check the actuator label for the model number. This number should match that of the controller/driver.
- ② Check that the Parallel I/O configuration matches (NPN or PNP).

Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

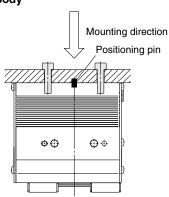
Compatible Controllers/Drivers

Туре	Step data input type	Programless type	Pulse input type				
Series	JXC51 JXC61	LECP1	LECPA				
Features	Parallel I/O	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals				
Compatible motor		Step motor (Servo/24 VDC)					
Max. number of step data	64 points	14 points	_				
Power supply voltage		24 VDC					
Reference page	1017	1042	1057				

	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IP™ direct input type	EtherNet/IP™ direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet® direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
Туре							Second Street, Second Second			
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IP™ direct input	EtherNet/IP™ direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet® direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor					Step (Servo/2	motor 24 VDC)				
Max. number of step data	64 points									
Power supply voltage		24 VDC								
Reference page					10	63				

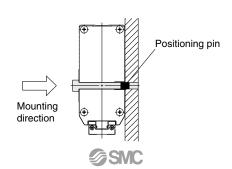
Specifications

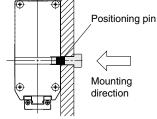
	Mode	e	LEHF10	LEHF20	LEHF32	LEHF40
	Open and close	Basic	16	24	32	40
	stroke/both sides [mm]	Long stroke	32	48	64	80
			40/15	50/15	70/16	70/16
	Lead [mm]		(2.667)	(3.333)	(4.375)	(4.375)
	Gripping force [N]	*1 *3	3 to 7	11 to 28	48 to 120	72 to 180
	Open and close speed/Pu		5 to 80/5 to 20	5	to 100/5 to	30
Actuator specifications	Drive method			Slide scr	ew + Belt	
ati	Finger guide type		Lir	near guide (No circulation	on)
ij	Repeated length measur	rement accuracy [mm]*4		±0	.05	
ec	Finger backlash/or	ne side [mm]*5		0.5 o	r less	
ds.	Repeatability [mm]]*6	±0.05			
ţ	Positioning repeatal		±0.1			
اڠ	Lost motion/one s		0.3 or less			
A	Impact/Vibration re		150/30			
	Max. operating fre	<u> </u>	60			
	Operating tempera		5 to 40			
	Operating humidit	y range [%RH]	90 or less (No condensation)			
	Enclosure		IP20			
	Weight [g]	Basic	340	610	1625	1980
		Long stroke	370	750	1970	2500
ions	Motor size		□20	□28		42
icat	Motor type		St	• `	ervo/24 VD	C)
ecif	Encoder				nental	
c sb	Power supply volta	age [V]		24 VD0	C ±10%	
Electric specifications	Power [W]*9		Max. power 19	Max. power 51	Max. power 57	Max. power 61


- *1 Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be ±30% (F.S.) for LEHF10, ±25% (F.S.) for LEHF20 and ±20% (F.S.) for LEHF32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
- *2 Pushing speed should be set within the range during pushing (gripping) operations. Otherwise, it may cause a malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
- *3 The speed and force may change depending on the cable length, load and mounting conditions Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)
- *4 Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.

 *5 There will be no influence of backlash during pushing (gripping) operations. Make the stroke longer for the
- amount of backlash when opening.

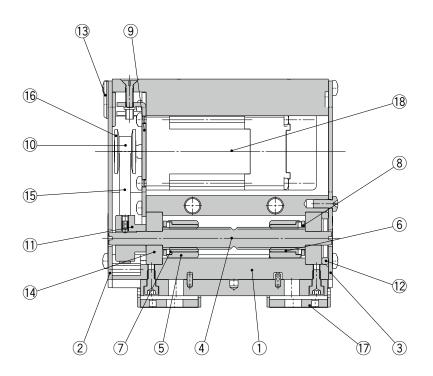
 *6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are repeatedly performed by the same sequence for the same workpiece.
- A reference value for correcting errors in reciprocal operation which occur during positioning operations
- *8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the
 - Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
- Indicates the max. power during operation (including the controller) This value can be used for the selection of the power supply.


How to Mount


a) When using the thread on the body

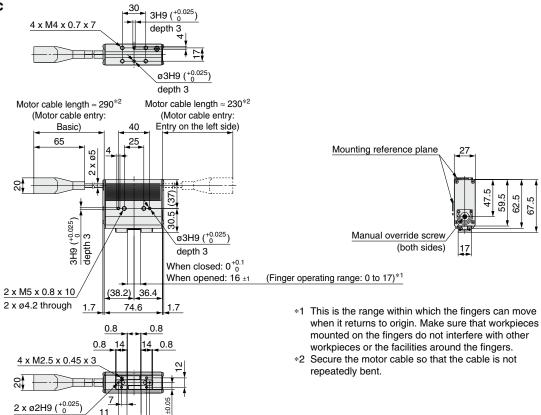
b) When using the thread on the mounting plate

c) When using the thread on the back of the body



Construction

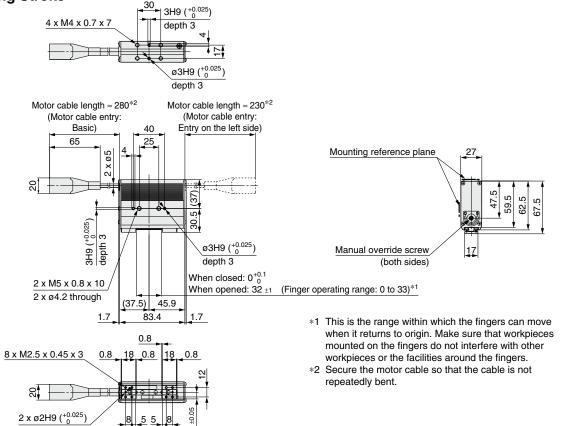
LEHF Series



Component Parts

No.	Description	Material	Note						
1	Body	Aluminum alloy	Anodized						
2	Side plate A	Aluminum alloy	Anodized						
3	Side plate B	Aluminum alloy	Anodized						
4	Slide shaft	Stainless steel	Heat treatment + Special treatment						
5	Slide bushing	Stainless steel							
6	Slide nut	Stainless steel	Heat treatment + Special treatment						
7	Slide nut	Stainless steel	Heat treatment + Special treatment						
8	Fixed plate	Stainless steel							
9	Motor plate	Carbon steel							
10	Pulley A	Aluminum alloy							
11	Pulley B	Aluminum alloy							
12	Bearing stopper	Aluminum alloy							
13	Rubber bushing	NBR							
14	Bearing	_							
15	Belt	_							
16	Flange	_							
17	Finger assembly	_							
18	Step motor (Servo/24 VDC)	_							

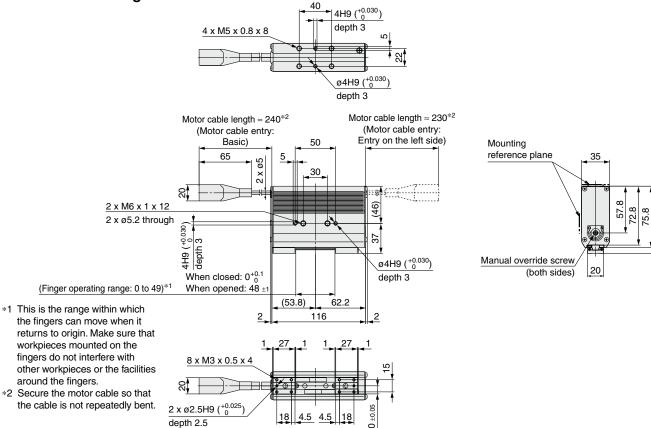
LEHF10K2-16: Basic



LEHF10K2-32: Long Stroke

depth 2

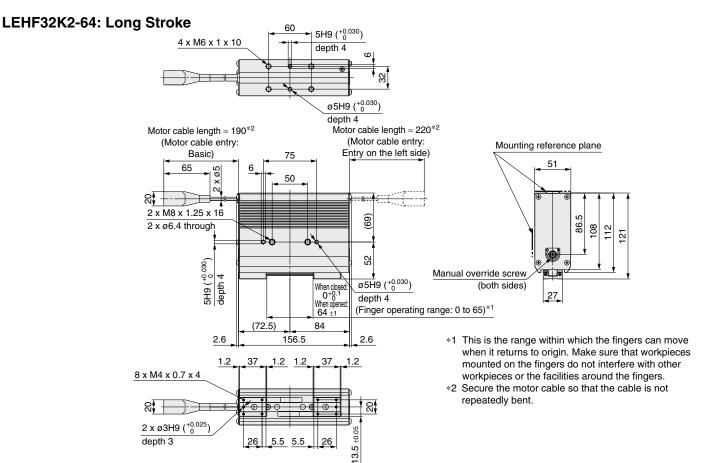
depth 2


11

LEHF20K2-24: Basic 4H9 (+0.030) 4 x M5 x 0.8 x 8 depth 3 ø4H9 (+0.030) depth 3 Motor cable length $\approx 270^{*2}$ Motor cable length $\approx 230^{*2}$ (Motor cable entry: (Motor cable entry: Entry on the left side) Basic) 50 65 5 Mounting reference plane 35 _30 2 x M6 x 1 x 12 (46)72.8 75.8 57. 2 x ø5.2 through 83 (+0.030) 37 depth Manual override screw 4H9 ø4H9 (+0.030) (both sides) 20 When closed: $0^{+0.1}_{0}$ depth 3 (Finger operating range: 0 to 25)*1 When opened: 24 (35.8) 45.7 *1 This is the range within which 81.5 the fingers can move when it returns to origin. Make sure that workpieces mounted on the 8 x M3 x 0.5 x 4 fingers do not interfere with other workpieces or the facilities around the fingers. *2 Secure the motor cable so that the cable is not repeatedly bent. 2 x ø2.5H9 (^{+0.025} depth 2.5 9

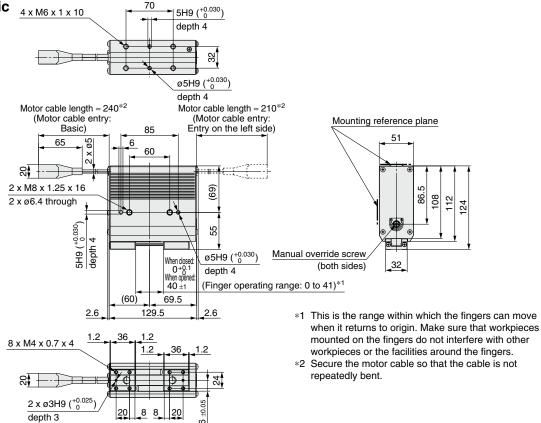
LEHF20K2-48: Long Stroke

83

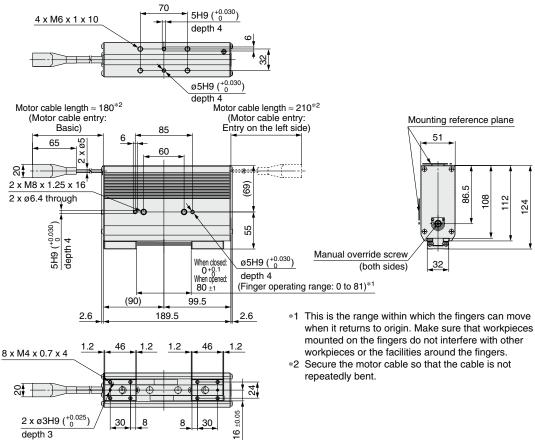


LEHF32K2-32: Basic 5H9 (^{+0.030}) depth 4 4 x M6 x 1 x 10 ø5H9 (+0.030) depth 4 Motor cable length ≈ 240*2 Motor cable length ≈ 220*2 (Motor cable entry: (Motor cable entry: Basic) Entry on the left side) Mounting 51 6 reference plane 8 2 x M8 x 1.25 x 16 69 2 x ø6.4 through 86. 5H9 (^{+0.030}) 22 depth ø5H9 (+0.030) Manual override screw 27 (both sides) depth 4 (Finger operating range: 0 to 33)*1 When closed: $0^{+0.1}_{0}$ When opened: 32 ±1 65.5 (49.5) 2.6 2.6 1.2 1.2 8 x M4 x 0.7 x 4 1.2 13.5 ±0.05 2 x ø3H9 (^{+0.025}) 18 5.5 5.5 depth 3 repeatedly bent.

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.


8 112 121

*2 Secure the motor cable so that the cable is not



LEHF40K2-40: Basic

LEHF40K2-80: Long Stroke

Model Selection

LEHS Series ▶ p. 867

Selection Procedure

Step Check the gripping force.

Check the Calculate the Select the model from Select the conditions required gripping force. gripping force graph. pushing speed.

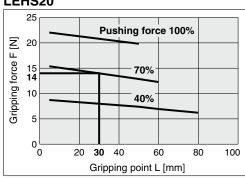
Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper with respect to workpiece mass

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 7 to 13 times*1 the workpiece weight, or more.
- *1 For details, refer to the calculation of required gripping
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be

Example) When it is desired to set the gripping force at 13 times or more above the workpiece weight.

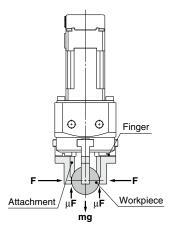

Required gripping force

= 0.1 kg x 13 x 9.8 m/s² \approx 12.7 N or more

Pushing force: 70%

Gripping point distance: 30 mm

LEHS20



When the LEHS20 is selected.

- Gripping force can be found to be 14 N from the intersection point of gripping point distance L = 30 mm and pushing force of 70%.
- Gripping force is 14 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 13 times or more.

Pushing speed: 30 mm/s

Calculation of required gripping force

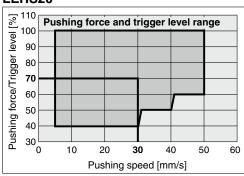
When gripping a workpiece as in the figure to the left, and with the following definitions,

- F: Gripping force [N]
- $\mu \colon$ Coefficient of friction between the attachments and the workpiece
- m: Workpiece mass [kg]
- g: Gravitational acceleration (= 9.8 m/s²)

mg: Workpiece weight [N] the conditions under which the workpiece

will not drop are 3 x μF > mg

Number of fingers mg and therefore, F >


With "a" representing the margin, "F" is determined by the following formula:

"Gripping force at least 7 to 13 times the workpiece weight"

• The "7 to 13 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" = 4, which allows for impacts that occur during normal transportation, etc.

When μ = 0.2	When μ = 0.1		
$F = \frac{mg}{3 \times 0.2} \times 4 = 6.7 \times mg$	$F = \frac{mg}{3 \times 0.1} \times 4 = 13.3 \times mg$		
7 x Workpiece weight	13 x Workpiece weight		

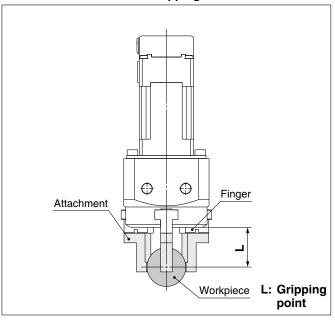
LEHS20

- Pushing speed is satisfied at the point where 70% of the pushing force and 30 mm/s of the pushing speed cross.
- Confirm the pushing speed range from the determined pushing force [%].

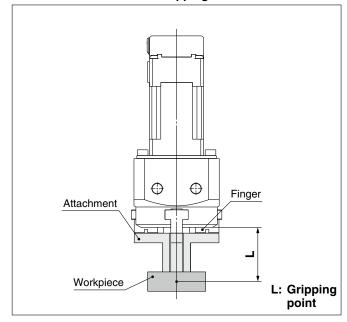
<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)

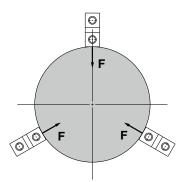
'		,	•		
Coefficient of friction $\boldsymbol{\mu}$	Attachme	nt – Material c	f workpiece	es (guid	eline)
0.1	Metal (s	urface rougl	nness Rz	3.2 or le	ess)
0.2		Me	etal		
0.2 or more		Rubber, F	Resin, etc.		

- Even in cases where the coefficient of friction is greater than $\mu = 0.2$, for reasons of safety, select a gripping force which is at least 7 to 13 times greater than the workpiece weight, as recommended by SMC.
 - · If high acceleration or impact forces are encountered during motion, a further margin should be considered.

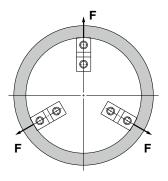

Step Check the gripping force: LEHS Series

• Indication of gripping force


The gripping force shown in the graphs on page 866 is expressed as "F", which is the gripping force of one finger, when three fingers and attachments are in full contact with the workpiece as shown in the figure below.


 Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

External Gripping State

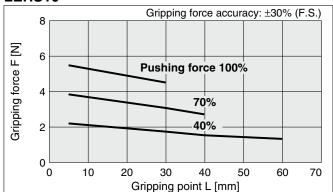


Internal Gripping State

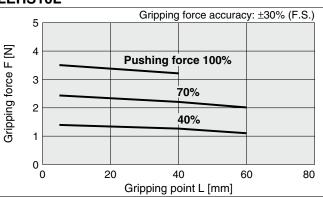
F: Gripping force

F: Gripping force

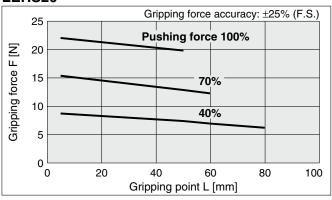
Step Check the gripping force: LEHS Series

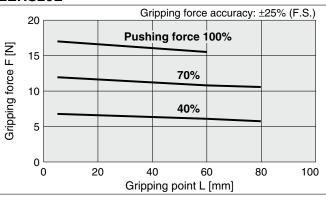

Basic

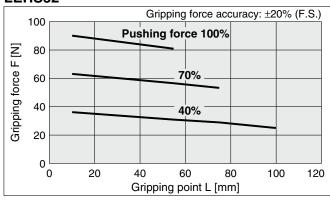
* Pushing force is one of the values of step data that is input into the controller.


Compact

* Pushing force is one of the values of step data that is input into the controller.

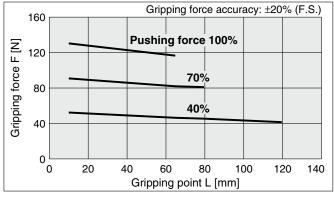

LEHS10


LEHS10L


LEHS20

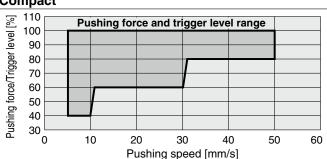
LEHS20L

LEHS32



Selection of Pushing Speed

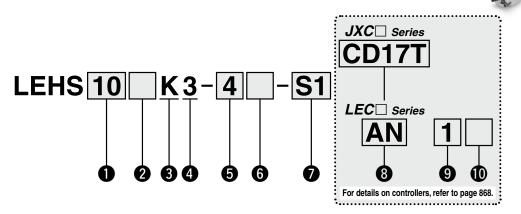
● Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.



LEHS40

Compact

Basic


Gripper 3-Finger Type

* For details, refer to page 1343 and onward.

LEHS Series LEHS10, 20, 32, 40

How to Order

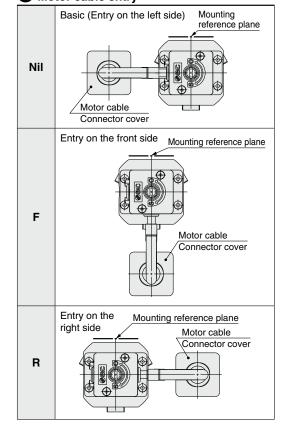
10 20

32 40

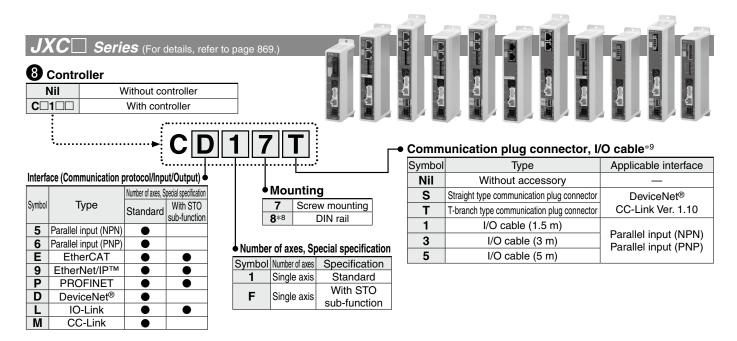
W Mo	tor size
Nil	Basic
L*1	Compact

3 Lea	ad
K	Basic

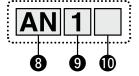
4 3-finger type


• curono [mmn]	
Stroke/diameter	Size
4	10
6	20
8	32
12	40

Stroke [mm]


Actuator cable type/length*3

Standard cable [m]			Robotic	cable	[m]		
Nil None			R1	1.5	RA	10*2	
S1	1.5		R3	3	RB	15*2	
S3	3		R5	5	RC	20*2	
S5	5		R8	8*2			


6 Motor cable entry

Series (For details, refer to page 869.)

8 Controller/Driver type*4

Nil	Without controller/driver						
1N	LECP1	NPN					
1P	(Programless type)	PNP					
AN	LECPA*5	NPN					
AP	(Pulse input type)	PNP					

9 I/O cable length*6

Without cable (Without communication plug connection)					
1.5 m					
3 m* ⁷					
5 m* ⁷					

10 Controller/Driver mounting

Nil	Screw mounting
D	DIN rail*8

- *1 Size: 10, 20 only
- *2 Produced upon receipt of order (Robotic cable only)
- *3 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to the **Web Catalog** if only the actuator cable is required.
- *4 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.
- *5 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R-□) on page1062 separately.
- *6 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. If an I/O cable is required, refer to the cable for the LECP1 (Web Catalog) or LECPA (Web Catalog).
- *7 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
- The DIN rail is not included. It must be ordered separately.
- Select "Nil" for anything other than DeviceNet®, CC-Link, or parallel

Select "Nil," "S," or "T" for DeviceNet® or CC-Link. Select "Nil," "1," "3," or "5" for parallel input.

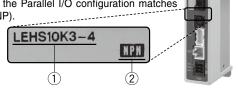
⚠ Caution

[CE/UKCA-compliant products]

① EMC compliance was tested by combining the electric actuator LEH series and the controller LEC/JXC series.

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

[UL-compliant products (For the LEC series)]


When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

- (1) Check the actuator label for the model number. This number should match that of the controller/driver.
- ② Check that the Parallel I/O configuration matches (NPN or PNP).

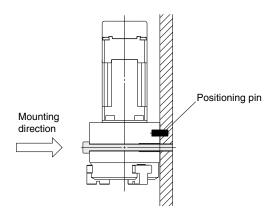
Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

Compatible Controllers/Drivers

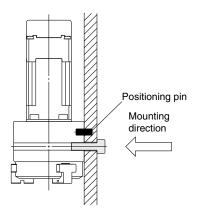
	Step data	Programless type	Pulse input type		
	input type	r rogramiess type	i dise iliput type		
Туре					
Series	JXC51 JXC61	LECP1	LECPA		
Features	Parallel I/O	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals		
Compatible motor		Step motor (Servo/24 VDC)			
Max. number of step data	64 points	14 points	_		
Power supply voltage		24 VDC			
Reference page	1017	1042	1057		

	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IP™ direct input type	EtherNet/IP™ direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet® direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
Туре							Second Street, Second Second			
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IP™ direct input	EtherNet/IP™ direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet® direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor					Step (Servo/2	motor 24 VDC)				
Max. number of step data	64 points									
Power supply voltage		24 VDC								
Reference page		1063								

Specifications

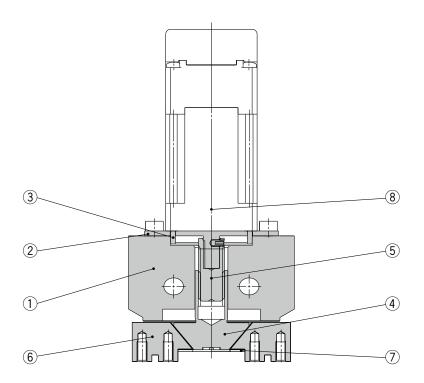


8 235/40 (5.875) 36 to 90 — 5 to 100/ 5 to 50 Wedge cam 05 r less	12 235/40 (5.875) 52 to 130 — 5 to 120/ 5 to 50		
235/40 (5.875) 36 to 90 — 5 to 100/ 5 to 50 Wedge cam	235/40 (5.875) 52 to 130 — 5 to 120/		
(5.875) 36 to 90 5 to 100/ 5 to 50 Wedge cam	(5.875) 52 to 130 — 5 to 120/		
36 to 90 5 to 100/ 5 to 50 Wedge cam	52 to 130 — 5 to 120/		
5 to 100/ 5 to 50 Wedge cam	5 to 120/		
5 to 50 Wedge cam			
5 to 50 Wedge cam			
Wedge cam 05	5 to 50		
05			
r less			
±0.02			
±0.05			
0.25 or less			
′30			
60			
40			
90 or less (No condensation)			
0			
975	1265		
_	_		
□ 4	42		
Step motor (Servo/24 VDC)			
Incremental			
±10%			
Max. power 57	Max. power 61		
_	_		
	40 condensation) 0 975 — crvo/24 VDC) ental ±10%		

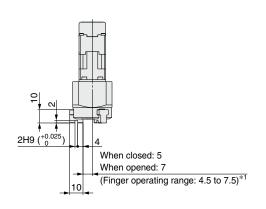

- *1 Gripping force should be from 7 to 13 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be ±30% (F.S.) for LEHS10, ±25% (F.S.) for LEHS20 and ±20% (F.S.) for LEHS32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
- *2 Pushing speed should be set within the range during pushing (gripping) operations. Otherwise, it may cause a malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
 *3 The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if
- the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)
- *4 Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
- *5 There will be no influence of backlash during pushing (gripping) operations. Make the stroke longer for the amount of backlash when opening.
 *6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are
- *6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are repeatedly performed by the same sequence for the same workpiece.
- *7 A reference value for correcting errors in reciprocal operation which occur during positioning operations
 *8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction
- *8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
- *9 Indicates the max. power during operation (including the controller) This value can be used for the selection of the power supply.

How to Mount

a) Mounting A type (when using the thread on the mounting plate)

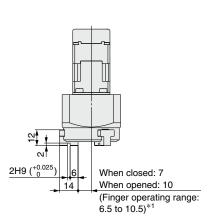

b) Mounting B type (when using the thread on the back of the body)

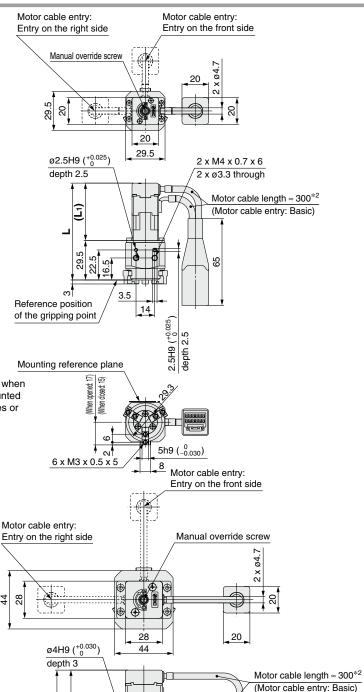
Construction

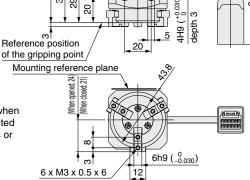

Component Parts

No.	Description	Material	Note				
1	Body	Aluminum alloy	Anodized				
2	Motor plate	Aluminum alloy	Anodized				
3	Guide ring	Aluminum alloy					
4	Slide cam	Stainless steel	Heat treatment + Special treatment				
5	Slide bolt	Stainless steel	Heat treatment + Special treatment				
6	Finger	Carbon steel	Heat treatment + Special treatment				
7	End plate	Stainless steel					
8	Step motor (Servo/24 VDC)						

LEHS10(L)K3-4


		[mm]	
Model L (L1)			
LEHS10K3-4	89.1	(59.6)	
LEHS10LK3-4	72.6	(43.1)	


- *1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
- *2 Secure the motor cable so that the cable is not repeatedly bent.


LEHS20(L)K3-6

		[mm]
Model	L	(L ₁)
LEHS20K3-6	98.8	(61.8)
LEHS20LK3-6	84.8	(47.8)

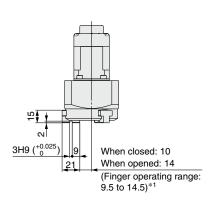
- *1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
- *2 Secure the motor cable so that the cable is not repeatedly bent.

Ē

37

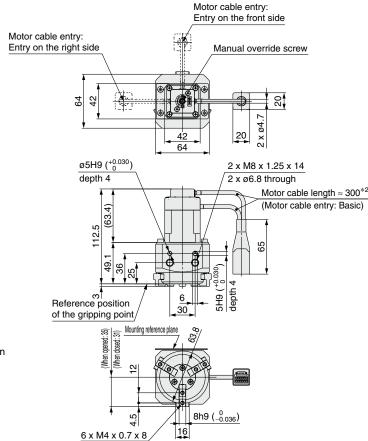
29

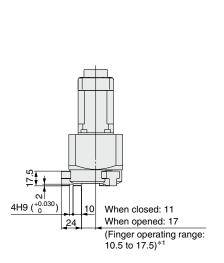
20

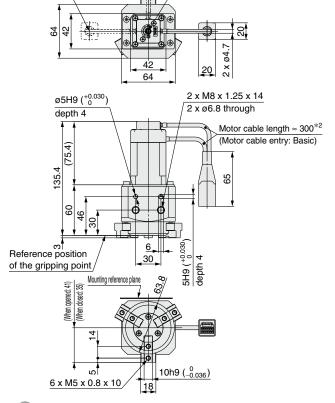

4

2 x M6 x 1 x 10 2 x ø5.2 through

65




LEHS32K3-8


- *1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
- *2 Secure the motor cable so that the cable is not repeatedly bent.

LEHS40K3-12

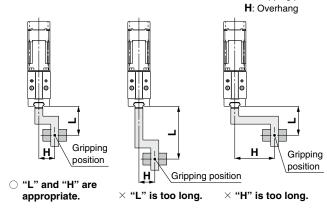
- *1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
- *2 Secure the motor cable so that the cable is not repeatedly bent.

Motor cable entry: Entry on the front side

Manual override screw

Motor cable entry: Entry on the right side

Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

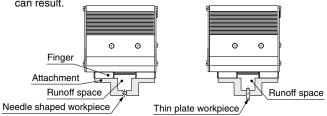

Design / Selection

.⚠Warning

1. Keep the specified gripping point.

If the specified gripping range is exceeded, excessive moment is applied to the sliding part of the finger, which may have an adverse affect on the service life of the product.

L: Gripping point


2. Design the attachment to be lightweight and short.

A long and heavy attachment will increase inertial force when the product is opened or closed, which causes play on the finger. Even if the gripping point of the attachment is within a specified range, design it to be short and lightweight as possible.

For a long or large workpiece, select a model of a larger size or use two or more grippers together.

Provide a runoff space for attachment when a workpiece is extremely thin or small.

Without a runoff space, the product cannot perform stable gripping, and the displacement of a workpiece or gripping failure can result.

4. Select a model that allows for gripping force in relation to the workpiece weight, as appropriate.

The selection of an inappropriate model may result in the dropping of a workpiece. Gripping force should be from 10 to 20 times (LEHZ, LEHF) or 7 to 13 times (LEHS) of the workpiece weight.

Gripping Force Accuracy

dripping rorde Addardoy				
LEHZ(J)10(L) LEHZ(J)16(L)	LEHZ(J)20(L) LEHZ(J)25(L)	LEHZ32	LEHZ40	
±30% (F.S.)	±25% (F.S.)	±20%	(F.S.)	
LEHF10	LEHF20	LEHF32	LEHF40	
±30% (F.S.)	±25% (F.S.)	±20%	(F.S.)	
LEHS10(L)	LEHS20(L)	LEHS32	LEHS40	
±30% (F.S.)	±25% (F.S.)	±20%	(F.S.)	

Do not use the product in applications where excessive external force (including vibration) or impact force is applied to it.

It may lead to breakage or galling, which may result in malfunction. Do not apply impact and vibration outside of the specifications.

Select a model that allows for open and close width relative to a workpiece.

The selection of an inappropriate model may result in the gripping at unexpected positions due to variable open and close width of the product and the diameter of a workpiece the product can handle. It is also necessary to make a larger stroke to overcome backlash created when the product will open after gripping.

Mounting

⚠ Warning

1. Do not drop or hit the gripper to avoid scratching and denting the mounting surfaces.

Even slight deformation may result in the deterioration of accuracy and operation failure.

2. When mounting the attachment, tighten the mounting screws within the specified torque range.

Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque may result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

Mounting of Attachment to Finger

The attachment should be mounted with the torque specified in the following table by screwing the screw into the finger mounting female thread and hole.

LEHZ Series

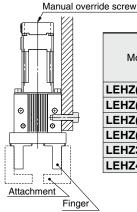
Model	Screw size	Max. tightening torque [N⋅m]
LEHZ(J)10(L)	M2.5 x 0.45	0.3
LEHZ(J)16(L)	M3 x 0.5	0.9
LEHZ(J)20(L)	M4 x 0.7	1.4
LEHZ(J)25(L)	M5 x 0.8	3.0
LEHZ32	M6 x 1	5.0
LEHZ40	M8 x 1.25	12.0

LEHF Series

Model	Screw size	Max. tightening torque [N⋅m]
LEHF10	M2.5 x 0.45	0.3
LEHF20	M3 x 0.5	0.9
LEHF32	M4 x 0.7	1.4
LEHF40	M4 x 0.7	1.4

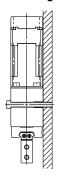
LEHS Series

Model	Screw size	Max. tightening torque [N·m]	
LEHS10(L)	M3 x 0.5	0.9	
LEHS20(L)	M3 x 0.5	0.9	
LEHS32	M4 x 0.7	1.4	
LEHS40	M5 x 0.8	3.0	

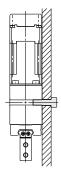


Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Mounting


Mounting of Electric Gripper, LEHZ/LEHZJ Series

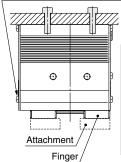
When using the thread on the side of the body


Model	Screw size	Max. tightening torque [N·m]	Max. screw-in depth L [mm]
LEHZ(J)10(L)	M3 x 0.5	0.9	6
LEHZ(J)16(L)	M4 x 0.7	1.4	6
LEHZ(J)20(L)	M5 x 0.8	3.0	8
LEHZ(J)25(L)	M6 x 1	5.0	10
LEHZ32	M6 x 1	5.0	10
LEHZ40	M8 x 1.25	12.0	14

When using the thread on the mounting plate

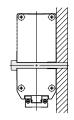
Model	Screw size	Max. tightening torque [N·m]
LEHZ(J)10(L)	M3 x 0.5	0.9
LEHZ(J)16(L)	M3 x 0.5	0.9
LEHZ(J)20(L)	M4 x 0.7	1.4
LEHZ(J)25(L)	M5 x 0.8	3.0
LEHZ32	M5 x 0.8	3.0
LEHZ40	M6 x 1	5.0

When using the thread on the back of the body

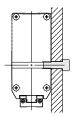


Model	Screw size	Max. tightening torque [N·m]	Max. screw-in depth L [mm]
LEHZ(J)10(L)	M4 x 0.7	1.4	6
LEHZ(J)16(L)	M4 x 0.7	1.4	6
LEHZ(J)20(L)	M5 x 0.8	3.0	8
LEHZ(J)25(L)	M6 x 1	5.0	10
LEHZ32	M6 x 1	5.0	10
LEHZ40	M8 x 1.25	12.0	14

Mounting of Electric Gripper, LEHF Series

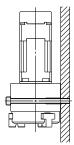

When using the thread on the body

Manual override screw/Both sides

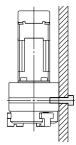

Model	Screw size	Max. tightening torque [N·m]	Max. screw-in depth L [mm]
LEHF10	M4 x 0.7	1.4	7
LEHF20	M5 x 0.8	3.0	8
LEHF32	M6 x 1	5.0	10
LEHF40	M6 x 1	5.0	10

When using the thread on the mounting plate

Model	Screw size	Max. tightening torque [N·m]
LEHF10	M4 x 0.7	1.4
LEHF20	M5 x 0.8	3.0
LEHF32	M6 x 1	5.0
LEHF40	M6 x 1	5.0


When using the thread on the back of the body

Model	Screw size	Max. tightening torque [N·m]	Max. screw-in depth L [mm]	
LEHF10 M5 x 0.8		3.0	10	
LEHF20	LEHF20 M6 x 1		12	
LEHF32	LEHF32 M8 x 1.25		16	
I EHEAD	M8 v 1 25	12.0	16	


Mounting of Electric Gripper, LEHS Series

When using the thread on the mounting plate

Model	Screw size	Max. tightening torque [N·m]	
LEHS10(L)	M3 x 0.5	0.9	
LEHS20(L)	M5 x 0.8	3.0	
LEHS32	M6 x 1	5.0	
LEHS40	M6 x 1	5.0	

When using the thread on the back of the body

Model	Screw size	Max. tightening torque [N·m]	Max. screw-in depth L [mm]
LEHS10(L) M4 x 0.7		1.4	6
LEHS20(L) M6 x 1		5.0	10
LEHS32	M8 x 1.25	12.0	14
LEHS40	M8 x 1.25	12.0	14

Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Mounting

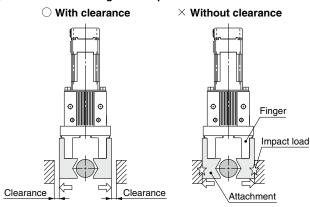
.⚠Warning

3. When mounting the electric gripper, tighten the mounting screws within the specified torque range.

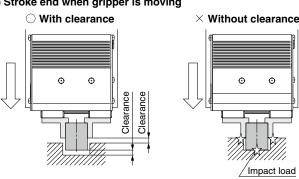
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque may result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

- 4. When fixing the attachment to the finger, avoid applying excessive torque to the finger.
 - Play or deteriorated accuracy can result.
- 5. The mounting face has holes and slots for positioning. Use them for accurate positioning of the electric gripper if required.
- 6. When a workpiece is to be removed when it is not energized, open or close the finger manually or remove the attachment beforehand.

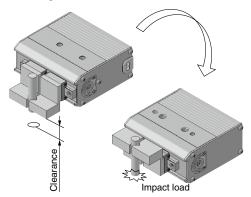
When it is necessary to operate the product by the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.


7. When gripping a workpiece, keep a gap in the horizontal direction to prevent the load from concentrating on one finger, to allow for workpiece misalignment.

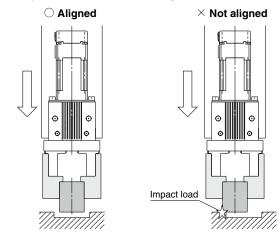
For the same purpose, when moving a workpiece for alignment by the product, minimize the friction resistance created by the movement of the workpiece. The finger can be displaced, play or breakage.


8. Perform adjustment and confirmation to ensure there is no external force applied to the finger.

If the finger is subject to repetitive lateral load or impact load, it can cause play or breakage and the lead screw can get stuck, which results in operation failure. Allow a clearance to prevent the workpiece or the attachment from hitting gripper product at the end of the stroke.


1) Stroke end when fingers are open

2) Stroke end when gripper is moving



3) When turning over

9. Adjust the gripping point so that an excessive force will not be applied to the fingers when inserting a workpiece.

In particular, during a trial run, operate the product manually or at a low speed and check that the safety is assured without impact.

Handling

⚠ Caution

1. The parameters of the stroke and the open/close speed are for both fingers.

The stroke and the open/close speed for one finger is half a set parameter.

2. When gripping a workpiece by the product, be sure to set to the pushing operation.

Also, do not allow a workpiece to collide with the finger or attachment during the positioning operation or within the positioning range.

Otherwise, the lead screw can get caught and result in a malfunction. However, if the workpiece cannot be gripped in pushing operation (such as a plastically deformed workpiece, rubber component, etc.), you can grip it in positioning operation with consideration to the elastic force of the workpiece. In this case, keep the driving speed for impact specified in item 3 on page 603.

When the operation is interrupted by a stop or temporary stop, and a pushing operation instruction is output just after operation is restarted, the operating direction will vary depending on the start position.

Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Handling

⚠ Caution

- 3. Keep the following driving speed range for pushing operations.
 - LEHZ/LEHZJ: 5 to 50 mm/s LEHF10: 5 to 20 mm/s LEHF20/32/40: 5 to 30 mm/s LEHS: 5 to 50 mm/s

Operation at the speed outside of the range may get the lead screw caught and result in a malfunction.

4. There is no backlash effect in pushing operations.

The return to origin is done by pushing operations.

The finger position can be displaced by the effect of the backlash during the positioning operations.

Take the backlash into consideration when setting the position.

5. Do not change the setting of energy saving mode.

When pushing (gripping) operations are continued, the heat generated by the motor may result in a malfunction.

This is due to the self-lock mechanism in the lead screw, which makes the product keep the gripping force. To save the energy in this situation where the product is to be standby or continue to grip for extended periods of time, the product will be controlled to reduce current consumption (to 40% automatically after it has gripped a workpiece once). If there is the reduction of gripping force seen in the product after a workpiece has been gripped and deformed over certain amount of time, contact SMC separately.

6. INP output signal

1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn ON. Initial value: Set to [0.50] or higher.

2) Pushing operation

When the effective force exceeds the step data [Trigger LV], the INP output signal will turn ON.

Use the product within the specified range of [Pushing force] and [Trigger LV].

- a) To ensure that the gripper holds the workpiece with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
- b) When the [Pushing force] and [Trigger LV] are set below the specified range, the INP output signal will turn ON from the pushing start position.
- c) The INP output signal is turned ON when pushing in the stroke end of an electric gripper even if workpiece is not held.

<INP output signal in the controller version>

● SV1.0* or more

Although the product automatically switches to the energy saving mode (reduced current) after pushing operations are completed, the INP output signal remains ON.

- SV0.6* or less
 - a. When [Trigger LV] is set to 40% (when the value is the same as the energy saving mode)

Although the product automatically switches to the energy saving mode (reduced current) after pushing operations are completed, the INP output signal remains ON.

b. When [Trigger LV] is set higher than 40%

The product is turned ON after pushing operations are completed, but INP output signal will turn OFF when current consumption is reduced automatically in energy saving mode.

Label position for controller version

<Pushing force and trigger level range>

LEHZ Series

Motor size	Pushing speed [mm/s]	Pushing force (Setting input value)	
Basic	41 to 50	50% to 100%	
Dasic	5 to 40	40% to 100%	
Compact	31 to 50	70% to 100%	
	21 to 30	50% to 100%	
	5 to 20	40% to 100%	

LEHZJ Series

Motor size	Body size	Pushing speed [mm/s]	Pushing force (Setting input value)	
Basic 10, 16		41 to 50	50% to 100%	
Dasic	20, 25	5 to 40	40% to 100%	
		21 to 50	80% to 100%	
Compact	10L, 16L	11 to 20	60% to 100%	
		5 to 10	50% to 100%	
		31 to 50	70% to 100%	
	20L, 25L	21 to 30	50% to 100%	
			5 to 20	40% to 100%

LEHF Series

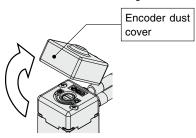
Pushing speed [mm/s]	Pushing force (Setting input value)	
21 to 30	50% to 100%	
5 to 20	40% to 100%	

LEHS Series

Motor size	Pushing speed [mm/s]	Pushing force (Setting input value)	
Basic	41 to 50 50% to 100		
Dasic	5 to 40	40% to 100%	
	31 to 50	80% to 100%	
Compact	11 to 30	60% to 100%	
	5 to 10	40% to 100%	

7. When releasing a workpiece, set the moving force to 150%

If the torque is too small when a workpiece is gripped in pushing operation, the product can have galling and become unable to release the workpiece.


8. If the finger has galling due to operational setting error, etc., open and close the finger manually.

When it is necessary to operate the product by the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.

<LEHZJ series>

In the case of a gripper with dust covers, remove the encoder dust cover before operating the manual override.

Refit the encoder dust cover after using the manual override.

Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Handling

9. Self-lock mechanism

The product keeps a gripping force due to the self-lock mechanism in the lead screw. Also, it will not operate in the opposite direction even when external force is applied during gripping a workpiece.

<Type of Stops, Cautions>

1) All the power supplies to the controller are shut off.

When the power supply is turned on to restart operation, the controller will be initialized, and the product can drop a workpiece due to a motor magnetic pole detective operation. (It means that there are finger motions of partial strokes by the phase detection of motor after power supply is turned on.) Remove the workpiece before restarting operation.

- "EMG (stop)" of the CN1 of the controller is shut off. When using the stop switch on the teaching box;
 - a) In case both of [SVRE] and [SETON] are ON before stop, [SVRE]: OFF / [SETON]: ON
 - b) How to restart operation

In this situation, since [SVRE] is on before stop, [SVRE] will be turned on automatically when stop is released, and operation can be restarted after that. It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur.

c) Cautions

An alarm can take place when operation is restarted from stop. Check that [SVRE] is turned on after the release of stop and restart operation.

- "M24V (motor driving power supply)" of the CN1 of the controller is shut off.
 - a) There will be no change in output conditions due to stop.
 - b) How to restart operation

In this situation, operation can be restarted after stop is released. It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur.

c) Cautions

An alarm can take place when stop is activated during operation or operation is restarted from stop.

10. Return to origin

- 1) It is recommended to set the directions of return to origin and workpiece gripping in the same direction.
 - If they are set opposite, there can be backlash, which worsens the measurement accuracy significantly.
- 2) If the direction of return to origin is set to CW (Internal gripping):
 - If the return to origin is performed with the product only, there can be significant deviation between different actuators. Use a workpiece to set return to origin.
- If the return to origin is performed by using a workpiece;
 The stroke (operation range) will be shortened. Recheck the value of step data.
- 4) If basic parameters (Origin offset) are used; When the return to origin is set with [Origin offset], it is

When the return to origin is set with [Origin offset], it is necessary to change the current position of the product. Recheck the value of step data.

Handling

∧ Caution

11. For pushing (gripping) operations, set the product to a position at least 0.5 mm away from a workpiece. (This position is referred to as the pushing start position.)

If the product is set to the same position as a workpiece, the following alarms may be generated and operation may become unstable

a. "Posn failed"

The product cannot reach the pushing start position due to variations in the width of workpieces.

b. "Pushing ALM"

The product is pushed back from the pushing start position after starting to push.

c. "Err overflow"

The displacement at the pushing start position exceeds the specified range.

- 12. When mounting the product, secure a bending diameter of 40 mm or longer for the motor cable.
- 13. Finite orbit type guide is used in the actuator finger part. By using this, when there are inertial force which cause by movements or rotation to the actuator, steel ball will move to one side and this will cause a large resistance and degrade the accuracy. When there are inertial force which cause by movements or rotation to the actuator, operate the finger to full stroke.

Especially in long stroke type, the accuracy of the finger may degrade.

Maintenance

⚠ Danger

1. When the product is to be removed, check it has not been gripping a workpiece.

There is a risk of dropping a workpiece.

∧ Caution

1. The dust cover on the gripper finger (LEHZJ series only) is a consumable item, replace the dust cover as and when it is necessary.

Otherwise, machining chips and fine particles may get into the product from the outside, resulting in a malfunction.

The dust cover on the gripper finger can be damaged if the finger attachment or the workpiece comes into contact with the dust cover during operation.

M

LEH Series

Battery-less Absolute Encoder Type Specific Product Precautions

Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Handling

∧ Caution

1. Absolute encoder ID mismatch error at the first connection

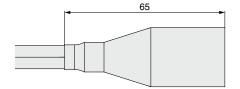
In the following cases, an "ID mismatch error" alarm occurs after the power is turned ON. Perform a return to origin operation after resetting the alarm before use.

- When an electric actuator is connected and the power is turned ON for the first time after purchase*1
- · When the actuator or motor is replaced
- · When the controller is replaced
- *1 If you have purchased an electric actuator and controller with the set part number, the pairing may have already been completed and the alarm may not be generated.

"ID mismatch error"

Operation is enabled by matching the encoder ID on the electric actuator side with the ID registered in the controller. This alarm occurs when the encoder ID is different from the registered contents of the controller. By resetting this alarm, the encoder ID is registered (paired) to the controller again.

When a controller is changed after pairing is completed				
	Encoder ID no. (* Numbers below are examples.)			
Actuator	17623	17623	17623	17623
Controller	17623	17699	17699	17623
ID mismatch error occurred?	No	Yes	Error reset ⇒ No	


In environments where strong magnetic fields are present, use may be limited.

A magnetic sensor is used in the encoder. Therefore, if the actuator motor is used in an environment where strong magnetic fields are present, malfunction or failure may occur. Do not expose the actuator motor to magnetic fields with a magnetic flux density of 1 mT or more.

When installing an electric actuator and an air cylinder with an auto switch (ex. CDQ2 series) or multiple electric actuators side by side, maintain a space of 40 mm or more around the motor. Refer to the construction drawing of the actuator motor.

The connector size of the motor cable is different from that of the electric actuator with an incremental encoder.

The motor cable connector of an electric actuator with a battery-less absolute encoder is different from that of an electric actuator with an incremental encoder. As the connector cover dimensions are different, take the dimensions below into consideration during the design process.

Battery-less absolute encoder connector cover dimensions